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‘What one fool can do, another can.
(dncient Simian Proverly



PREFACE TO THE SECOND EDITION.

THE surprising success of this work has led the
author to add a considerable number of worked
examples and exercises. Advantage has also been
taken to enlarge certain parts where experience
showed that further explanations would be useful.

™he author acknowledges with gratitude many
valuable suggestions and letters received from teachers,
students, and—critics.

October, 1914.
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PROLOGUE.

CoNSIDERING how many fools can calculate, it is
surprising that it should be thought either a difficult
or a tedious task for any other fool to learn how to
master the same tricks.

Some calculus-tricks are quite easy. Some are
enormously difficult. -The fools who write the text-
books of advanced mathematics—and they are mostly
clever fools—seldom take the trouble to show you how
easy the easy calculations are. On the contrary, they
seem to desire to impress you with their tremendous
cleverness by going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have
had to unteach myself the difficulties, and now beg
to present to my fellow fools the parts that are not.
hard. Master these thoroughly, and the rest will
follow. What one fool can do, another can.



CHAPTER L

TO DELIVER YOU FROM THE PRELIMINARY
TERRORS.

THE preliminary terror, which chokes off most fifth-
form boys from even attempting to learn how to
calculate, can be abolished once for all by simply stating
what is the meaning—in common-sense terms—of the
two principal symbols that are used in calculating.

These dreadful symbols are:
(1) d which merely means “a little bit of.”

Thus dx means a little bit of ; or du means a
little bit of %. Ordinary mathematicians think it
more polite to say “ an element of,” instead of “ a little
bit of.” Just as you please. But you will find that
these little bits (or elements) may be considered to be
indefinitely small.

2) j which is merely a long S, and may be called
(if you like) “the sum of.”

Thus Idx means the sum of all the little bits
of x; or Idt means the sum of all the little bits

of ¢. Ordinary mathematicians call this symbol “ the
C.M.E. A
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integral of.” Now any fool can see that if x is
considered as made up of a lot of little bits, each of
which is called dz, if you add them all up together
you get the sum of all the da’s, (which is the same
thing as the whole of ). The word “integral ” simply
means “the whole.” If you think of the duration
of time for one hour, you may (if you like) think of
it as cut up into 3600 little bits called seconds. The
whole of the 3600 little bits added up together make
one hour.

When you see an expression that begins with this
terrifying symbol, you will henceforth know that it
is put there merely to give yov instructions that you
are now to perform the operation (if you can) of
totalling up all the little bits that are indicated by
the symbols that follow. -

That’s all.



CHAPTER IL
ON DIFFERENT DEGREES OF SMALLNESS.

WE shall find that in our processes of calculation we
have to deal with small quantities of various degrees
of smallness.

We shall have also to learn under what circumstances
we may consider small quantities to be so minute
that we may omit them from consideration. Every-
thing depends upon relative minuteness.

Before we fix any rules let us think of some
familiar cases. There are 60 minutes in the hour,
24 hours in the day, 7 days in the week. There are
therefore 1440 minutes in the day and 10080 minutes
in the week.

Obviously 1 minute is a very small quantity of
time compared with a whole week. Indeed, our
forefathers considered it small as compared with an
hour, and called it “one minlute,” meaning a minute
fraction—namely one sixtieth—of an hour. When
they came to require still smaller subdivisions of time,
they divided each minute into 60 still smaller parts,
which, in Queen Elizabeth’s days, they called “second
minltes” (i.e., small quantities of the second order of
minuteness). Nowadays we call these small quantities
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of the second order of smallness “seconds.” But few
people know why they are so called. '

Now if one minute is so small as compared with a
whole day, how much smaller by comparison is one
second ! :

Again, think of a farthing as compared with a sove-
reign: it is worth only a little more than 1445 part.
A farthing more or less is of precious little importance
compared with a sovereign: it may certainly be re-
garded as a small quantity. But compare a farthing
with £1000: relatively to this greater sum, the
farthing is of no more importance than i34 of a
farthing would be to a sovereign. Even a golden
sovereign is relatively a negligible quantity in the
wealth of a millionaire.

Now if we fix upon any numerical fraction ae
constituting the proportion which for any purpose
we call relatively small, we can easily state other
fractions of a higher degree of smallness. Thus if,
for the purpose of time, g be called a small fraction,
then 4y of & (being a small fraction of a small
fraction) may be regarded as a small quantity of the
second order of smallness.*

Or, if for any purpose we were to take 1 per cent.
('ie, &) as a small fraction, then 1 per cent. of

1 per cent. (i.e,15a5g) Would be a small fraction

of the second order of smallness; and ;553555 Would

*The mathematicians talk about the second order of ¢‘ magnitude”
(s.e. greatness) when theK really mean second order of smallness.
This is very confusing to beginners.
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be a small fraction of the third order of smallness,
being 1 per cent. of 1 per cent. of 1 per cent.

Lastly, suppose that for some very precise purpose
we should regard ogo555 @8 “small” Thus, if a
first-rate chronometer is not to lose or gain more than
half a minute in a year, it must keep time with an
accuracy of 1 part in 1,051,200. Now if, for such a

purpose, we regard 1 5go55s (OF one milliont;h) as a
small quantity, then that is,

1,000,000 o 100 ,000°
1000550000555 (or one billionth) will be a small
quantity of the second order of smallness, and may

be utterly disregarded, by comparison.

Then we see that the smaller a small quantity itself
is, the more negligible does the corresponding small
quantity of the second order become. Hence we
know that im all cases we are justified in neglecting
the small quantities of the second—or third (or
higher)—orders, if only we take the small quantity
of the first order small enough in itself.

But it must be remembered that small quantities,
if they occur in our expressions as factors multiplied
by some other factor, may become important if the
other factor is itself large. Evena farthing becomes
important if only it is multiplied by a few hundred.

Now in the calculus we write dx for a little bit
of x. These things such as da, and du, and dy, are
called “differentials,” the differential of @, or of w,
or of y, as the case may be. [You read them as
dee-eks, oc dee-you, or dee-wy.] If da be a small bit
of «, and relatively small of itself, it does not follow
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that such quantities as x.dx, or #’dx, or a*dx are
negligible. But da x dx would be negligible, being a
small quantity of the second order.

A very simple example will serve as illustration.

Let us think of # as a quantity that can grow by
a small amount so as to become x+dx, where dz is
the small increment added by growth. The square
of this is a?+2x-dx+(dx). The second term is
not negligible because it is a first-order quantity;
while the third term is of the second order of smali-
ness, being a bit of a bit of #. Thus if we took
dz to mean numerically, say, g% of , then the second
term would be 2 of 2, whereas the third term would
be 5 of % This last term is clearly less important
than the second. But if we go further and take
dx to mean only &% of @, then the second term
will be &% of % while the third term will be

1 2
only 1,000,000 of &
x

Fia. 1,

Geometrically this may be depicted as follows:
Draw a square (Fig. 1) the side of which we will
take to represent x. Now suppose the square to
grow by having a bit dz added to its size each
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way. The enlarged square is made up of the original
square a2, the two rectangles at the top and on the
right, each of which is of area a-dx (or together
2x - dz), and the little square at the top right-hand
corner which is (dx)%. In Fig. 2 we have taken dx as

X dx
d e dx 2
il (dx)
x X
%2
N\x-dx
x dx
F1e. 2, Fie. 3.

quite a big fraction of x—about 3. But suppose we
had taken it only 3y—about the thickness of an
inked line drawn with a fine pen. Then the little
corner square will have an area of only 3= of a?,
and be practically invisible. ~Clearly (dx)? is negligible
if only we consider the increment dx to be itself
small enough.

Let us consider a simile.

Suppose a millionaire were to say to his secretary:
next week I will give you a small fraction of any
money that comes in to me. Suppose that the
secretary were to say to his boy: I will give you a
small fraction of what I get. Suppose the fraction
in each case to be 13y part. Now if Mr. Millionaire
received during the next week £1000, the secretary
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would receive £10 and the boy 2 shillings. Ten
pounds would be a small quantity compared with
£1000; but two shillings is a small small quantity
indeed, of a very secondary order. But what would
be the disproportion if the fraction, instead of being
oo had been settled at 1g%v part? Then, while
Mr. Millionaire got his £1000, Mr. Secretary would
get only £1, and the boy less than one farthing!

The witty Dean Swift * once wrote :

“ So, Nat'ralists observe, a Flea

“Hath smaller Fleas that on him prey.

“ And these have smaller Fleas to bite ’em,
“ And so proceed ad nfinitum.”

An ox might worry about a flea of ordinary
size—a small creature of the first order of smallness.
But he would probably not trouble himself about a
flea’s flea; being of the second order of smallness, it
would be negligible. Even a gross of fleas' fleas
would not be of much account to the ox.

*On Pee/ry = Rhapsody (p.>20), printed 1733—usually misquoted,



CHAPTER IIL
ON RELATIVE GROWINGS.

A1y through the calculus we are dealing with quan-
tities that are growing, and with rates of growth.
We classify all quantities into two classes: constants
and variables. Those which we regard as of fixed
value, and call constants, we generally denote alge-
braically by letters from the beginning of the
alphabet, such as @, b, or ¢; while those which we
consider as capable of growing, or (as mathematicians
say) of “varying,” we denote by letters from the end
of the alphabet, such as «, ¥, 2, u, v, w, or sometimes ¢.

Moreover, we are usually dealing with more than
one variable at once, and thinking of the way in
which one variable depends on the other: for instance,
we think of the way in which the height reached
by a projectile depends on the time of attaining that
height. Or, we are asked to consider a rectangle of
given area, and to enquire how any increase in the
length of it will compel a corresponding decrease in
the breadth of it. Or,we think of the way in which
any variation in the slope of a ladder will cause the
height that it reaches, to vary.

Suppose we have got two sucb variables that
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depend one on the other. An alteration in one will
bring about an alteration in the other, because of this
dependence. Let us call one of the variables «, and
the other that depends on it .

Suppose we make x to vary, that is to say, we
either alter it or imagine it to be altered, by adding
to it a bit which we call dz. We are thus causing @
to become x+dx. Then, because £ has been altered,
" ¢ will have altered also, and will have become ¥+ dy.
Here the bit dy may be in some cases positive, in
otners negative; and it won't (except very rarely) be
the same size as da.

Take two examples.

(1) Let « and y be respectively the base and the
height of a right-angled triangle (Fig. 4), of which

dy
y |y
\30°
x ax
Fic. 4.

the slope of the other side is fixed at 80°. If we
suppose this triangle to expand and yet keep its
angles the same as at first, then, when the base grows
so as to become x+dx, the height becomes y+dy.
Here, increasing « results in an increase of y. The
little triangle, the height of which is dy, and the base
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of which is d, is similar to the original triangle ; and

it is obvious that the value of the ratio g—z is the

same as that of the ratio 4. As the angle is 30° it
will be seen that here

dy_ 1

de 178
(2) Let = represent, in Fig. 5, the horizontal dis-
tance, from a wall, of the bottom end of a ladder,

B

\L
X
Fia. 5.

AB, of fixed length; and let y be the height it
reaches up the wall. Now y clearly depends on a.
It is easy to see that, if we pull the bottom end 4 a
bit further from the wall, the top end B will come
down a little lower. Let us state this in scientific
language. If we increase & to x+dx, then y will
become y—dy; that is, when x receives a positive
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increment, the increment which results to g iy
negative.

Yes, but how much? Suppose the ladder was so
long that when the bottom end 4 was 19 inches from
the wall the top end B reached just 15 feet from the
ground. Now, if you were to pull the bottom end
out 1 inch more, how much would the top end come
down? ‘Put it all into inches: =19 inches, y =180
inches. Now the increment of & which we call dz,
is 1 inch: or z+dx =20 inches.

How much will y be diminished ? The new height
will be y—dy. If we work out the height by Euclid
I. 47, then we shall be able to find how much dy will
be. The length of the ladder is

&/(180)24(19)2=181 inches.
Clearly then, the new height, which is ¥ —dy, will be
such that
(y —dy)?=(181)>—(20)2= 32761 — 400 = 32361,
y—dy = /32361 =17989 inches.
Now y is 180, so that dy is 180 —179-89=0-11 inch.

So we see that making dx an increase of 1 inch
has resulted in making dy a decrease of 0'11 inch.

And the ratio of dy to dz may be stated thus:

dy 011
de~ 17

It is also easy to see that (except in one particular
position) dy will be of a different size from da.

Now right through the differential calculus we
are hunting, hunting, hunting for a curious thing,
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a mere ratio, namely, the proportion which dy
bears to dx when both of them are indefinitely
small.

It should be noted here that we can only find

this ratio g;{ when % and x are related to each

other in some way, so that whenever & varies y does
vary also. For instance, in the first example just
taken, if the base x of the triangle be made longer,
the height y of the triangle becomes greater also,
and in the second example, if the distance a of the
foot of the ladder from the wall be made to increase,
the height y veached by the ladder decreases in a
corresponding manner, slowly at first, but more and
more rapidly as a becomes greater. In these cases
the relation between a and y is perfectly definite,

it can be expressed mathematically, being ;—’/g =tan 30°

and 2?+y?=10% (where [ is the length of the ladder)
respectively, and g{% has the meaning we found in
each case.

If, while x is, as before, the distance of the foot
of the ladder from the wall, y is, instead of the
height reached, the horizontal length of the wall, or
the number of bricks in it, or the number of years
since it was built, any change in # would naturally
cause no change whatever in y; in this case dy has

dx
no meaning whatever, and it is not possible to find
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an expression for it. Whenever we use differentials
dx, dy, dz, etc, the existence of some kind of
relation between «, y, %, ete, is implied, and this
relation is called a “function” in «, y. %, ete.; the
two expressions given above, for instance, namely

f%=ta,n 30° and a®+y®=10% are functions of x and .

Such expressions contain implicitly (that is, contain
without distinctly showing it) the means of expressing
either # in terms of y or y in terms of #, and for
this reason they are called tmplicit functions in
« and y; they.can be respectively put into the forms

_ ° __ Y
y=atan 30° or =S
and y=AP=2> or z=nT—3~

These last expressions state explicitly (that is, dis-
tinctly) the value of & in terms of y, or of  in terms
of x, and they are for this reason called explicit
functions of x or y. For example a®+3=2y—T7 is
an implicit function in 2 and y; it may be written
y=w2_;10 (explicit function of x) or x=a/2y —10
(explicit function of y). We see that an explicit
function in a, g, %, ete, is simply something the
value of which changes when &, ¥, z etc, are
changing, either one at the time or several together.
Because of this, the value of the explicit function is
called the dependent variable, as it depends on the
value of the other variable quantities in the function;
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these other variables are called the 4ndependent
variables because their value is not determined from
the value assumed by the function. For example,
if u=a?sin 6, x and 6 are the independent variables,
and % is the dependent variable.

Sometimes the exact relation between several
quantities @, y, z either is not known or it is not
convenient to state it; it is only known, or con-
venient to state, that there is some sort of relation
between these variables, so that one cannot alter
either & or y or z singly without affecting the other
quantities; the existence of a function in «, g, 2 is
then indicated by the notation F(x, y, ) (implicit
function) or by x=F(y, ), y=F(x, z) or z=F(x, y)
(explicit function). Sometimes the letter £ or ¢ is used
instead of F, so that y=F(x), y=/(x) and y=¢(x)
all mean the same thing, namely, that the value of
y depends on the value of & in some way which is
not stated.

We call the ratio le—g; “the differential coefficient of

y with respect to 2.” It is a solemn scientific name
for this very simple thing. But we are not going
to be frightened by solemn names, when the things
themselves are so easy. Instead of being frightened
we will simply pronounce a brief curse on the
stupidity of giving long crack-jaw names; and, having
relieved our minds, will go on to the simple thing
dy

#tself, namely the ?atlo d
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In ordinary algebra which you learned at school,
you were always hunting after some unknown
quantity which you called & or y; or sometimes
there were two unknown quantities to be hunted
for simultaneously. You have now to learn to go
hunting in a new way; the fox being now neither
& nor y. Instead of this you have to hunt for this

curious cub called % The process of finding the
value of % is called “differentiating.” But, remember,
what is wanted is the value of this ratio when both
dy and dx are themselves indefinitely small. The
true value of the differential coeflicient is that to which
it approximates in the limiting case when each of
them is considered as infinitesimally minute.

Let us now learn how to go in quest of d_y

dx
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NOTE TO CHAPTER III.
How to read Differentials.

It will never do to fall into the schoolboy error of
thinking that dx means d times «, for d is not a
factor—it means “an element of” or “a bit of”
whatever follows. One reads dz thus: “dee-eks.”

In case the reader has no one to guide him in such
matters it may here be simply said that one reads
differential coefficients in the following way. The
differential coefficient

% is read “dee-wy by dee-eks,” or “dee-wy over
dee-eks.”

du

So also T is read “ dee-you by dee-tee.”

Second differential coefficients will be met with

later on. They are like this:
@y
d—a;g 3
and it means that the operation of differentiating ¥
with vespect to x has been (or has to be) performed
twice over.

Another way of indicating that a function has been
ditferentiated is by putting an accent to the symbol of
the function. Thus if y=/F(x), which means that y
is some unspecified function of x (see p. 14), we may

write F'(x) instead of d—(% Similarly, F"(x)

will mean that the original function F(x) has been
differentiated twice over with respect to a.
C.M.E. ' B

which is read “ dee-two-wy over dee-eks-squared,”



CHAPTER 1IV. -
SIMPLEST CASES.

Now let us see how, on first principles, we can
differentiate some simple algebraical expression.

Case 1.

Let us begin with the simple expression y=ua?
Now remember that the fundamental notion abe-it
the calculus is the idea of growing. Mathematicians
call it varying. Now as y and «® are equal to one
another, it is clear that if x grows, ? will also grow.
And if a* grows, then y will also grow. What we
have got to find out is the proportion between the
growing of y and the growing of . In other words
our task is to find out the ratio between dy and dz,

or, in brief, to find the value of g—z

Let a, then, grow a little bit bigger and become
x+dx; similarly, y will grow a bit bigger and will
become y+dy. Then, clearly, it will still be true
that the enlarged y will be equal to the square of the
enlarged #. Writing this down, we have:

y+dy=(x+dx)p

Doing the squaring we get:

y+dy=ax*+ 2z - de+(dx)>
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What does (dx)? mean? Remember that dx meant
a bit—a little bit—of . Then (dx)? will mean a little
bit of a little bit of x; that is, as explained above
(p. 4), it is a small quantity of the second order
of smallness. It may therefore be discarded as quite
inconsiderable in comparison with the other terms
Leaving it out, we then haveé:

y+dy=x+2x - dx.

Now y=a?; so let us subtract this from the equa-
tion and we have left

dy=2x-dux.
Dividing across by dx, we find

dy _

(l—;l,' =2z.

Now this* is what we set out to find. The ratio of
the growing of y to the growing of x is, in the case
before us, found to be 2.

* N.B.—This ratio Z_‘Z is the result of differentiating y with

respect to x. Differentiating means finding the differential co-
efficient. Suppose we had some other function of z, as, for
example, u=Tx2+3. Then if we were told to differentiate this

with respect to x, we should have to find %, or, what is the same

thing, W On the other hand, we may have a case in which

time was the independent variable (see p. 15), such as this:
y=b+3at2. Then, if we were told to differentiate it, that means we
must find its differential coefficient with respect to . So that then

our business would be to try to find %, that is, to find a(b+3at?) ;}“‘2).
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Numerical example.

Suppose =100 and .". y=10,000. Then let 2 grow
till it becomes 101 (that is, let dz=1). Then the
enlarged y will be 101 x 101 =10,201. But if we agree
that we may ignore small quantities of the second
order, 1 may be rejected as compared with 10,000; so
we may round off the enlarged » to 10,200. y has
grown from 10,000 to 10,200; the bit added on is dy,
which is therefore 200.

dy 200

dx~
of the prevmus paragraph, we find da,_zw And so
it is; for =100 and 2x=200.

But, you will say, we neglected a whole unit.

Well, try again, making dx a still smaller bit.

Try de=+; Then x+dxr=1001, and

(x+dx)*=1001x1001=10,02001.

——=200. According to the a,ltrebra-workmg

Now the last figure 1 is only one-millionth part of
the 10,000, and is utterly negligible; so we may
take 10,020 without the little decimal at the end.

And this makes dy=20; and d‘/ 39—200, which
01
is still the same as 2.

Case 2.

Try differentiating y=2a® in the same way.

We let y grow to y+dy, while 2 grows to x+dax
Then we have

y+dy=(w+dx)’.
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Doing the cubing we obtain
y+dy =a®+3x* - de+3x(dx)? +(dx).

Now we know that we may neglect small quantities
of the second and third orders; since, when dy and dax
are both made indefinitely small, (dz)? and (dz)®
will become indefinitely smaller by comparison. So,
regarding them as negligible, we have left:

y+dy=a®+ 322 de.

But y=23; and, subtracting this, we haves

dy=3x*- dux,
Y _ o2
and = 32
Case 3.

Try differentiating y=a* Starting as before by
letting both y and 2 grow a bit, we have:
y+dy=(x+dx)
Working out the raising to the fourth power, we get,
Y+ dy =xt+4x3dx+ 62 (dx)? + 4 (dx)® + (dx)s
Then, striking out the terms containing all the

higher powers of dx, as being negligible by com-
parison, we have

y+dy=at+daidx.
Subtracting the original y=a*, we have lef}

dy=4x*dx,
ay_
and p 4o,
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Now all these cases are quite easy. Let us collect:
the results to see if we can infer any general rule.
Put them in two columns, the values of y in one

and the corresponding values found for W in the
dx
other: thus
dy
y dr
a? 2x
a® 3x?
at dx?

Just look at these results: the operation of differen-
tiating appears to have had the effect of diminishing
the power of & by 1 (for example in the last case
reducing a* to a?), and at the same time multiplying
by a number (the same number in fact which originally
appeared as the power). Now, when you have once
seen this, you might easily conjecture how the others
‘will run. You would expect that differentiating a°
would give 5x*, or differentiating &% would give 6.°
It you hesitate, try one of these, and see whether
the conjecture comes right.

Try y=aob

Then y+dy=(x+dx)®

=a®+ 5xtdx+ 1023 (dz)* + 102%(dx)
+ 5x(dx)t + (dx).

Neglecting all the terms containing small quantities

of the higher orders, we have left

y+dy=as+batda,
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and subtracting y =5 leaves us

dy — 5xtdzx,
ay_ . 4
whence o= 22 exactly as we supposed.

Following out logically our observation, we should
conclude that if we want to deal with any higher
power,—call it n—we could tackle it in the same
way.

Let y=a",
then, we should expect to find that
(_'li/ — (n-1)
="

For example, let =8, then y=a8; and differ-
e .ody_ o o
entiating it would give dx—&x .

And, indeed, the rule that differentiating a» gives as
the result na"-! is true for all cases where n is a
whole number and positive. [Expanding (z+dx)* by
the binomial theorem will at once show this.] But
the question whether it is true for cases where n
has negative or fractional values requires further
consideration.

Case of a negative powenr.
Let y=2-2 Then proceed as before:
y-+dy=(@+dw)"?
2

=w_2(1+a_% o
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Expanding this by the blnomlal theorem (see p. 141),
we get

o 2dx 2(2+1) dm
=% 2[1 x | 1x2 —ete ]

—2z-3.dx+ 3z -4(dac)2 —4x-%(duw)*+ ete.

So, neglecting the small quantities of higher orders
of smallness, we have:

y+dy=2-2—2x-3dx.
Subtracting the original y=%-2, we find

dy= —2x%dzx,
dy 3
?d'—z' = 2;7,' 03

And this is still in accordance with the rule inferred
above,

Case of a fractional power.
Let y=x§. Then, as before,
3
y+dy=(w+dw)*=mi’(l+‘—@)
— 1 de 1 (dx)y
=Az+ +terms with higher
T2 Nu 8aNz powers of dwg

Subtracting the original y=a3, and neglecting higher
powers we have left:

_ldxe 1 _4
d ) 7; = é . dw,
and d7/— L3, This agrees with the general rule,
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Summary. Let us see how far we have got. We
have arrived at the following rule: To differentiate
", multiply it by the power and reduce the power by
one, so giving us nx™-! as the result.

Exercises I. (See p. 288 for Answers.)

Differentiate the following:

Q) y=a® @) y=a3
) y=a% 4) u=¢**
(5) z=~/u (6) y=~/z"®
) u=\/% (8) y=2x%

9) y=n/2* (10) y=—-\/};

You have now learned how to differentiate powers
of . How easy it is!



CHAPTER V.
NEXT STAGE. WHAT TO DO WITH CONSTANTS.

IN our equations we have regarded x as growing,
and as a result of x being made to grow y also
changed its value and grew. We usually think of =
as a quantity that we can vary; and, regarding the
variation of x as a sort of cause, we consider the re-
sulting variation of y as an effect. In other words, we
regard the value of y as depending on that of . Both
« and y are variables, but x is the one that we operate
upon, and y is the “dependent variable.” In all the
preceding chapter we have been trying to find out
rules for the proportion which the dependent variation
in g bears to the variation independently made in a.

Our next step is to find out what effect on the
process of differentiating is caused by the presence of
constants, that is, of numbers which don’t change
when 2 or y changes its value.

Added Constants.

Let us begin with some simple case of an added
constant, thus:

Let y=a%+5.
Just as before, let us suppose & to grow to 2+ dx and
y to grow to y+dy.
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Then: y+dy=(x+dx)*+5
=%+ 3axldx + 3x(dx) + (dx)®+ 5.
Neglecting the small quantities of higher orders, this
becomes g4 dy=a®+ 8- da+5.
Subtract the original ¥ =a%+5, and we have left:

dy = 3x*dx.
dy _
Te= 3%

So the 5 has quite disappeared. It added nothing
to the growth of x, and does not enter into the
differential coeflicient. If we had put 7, or 700, or
any other number, instead of 3, it would have dis-
appeared. So if we take the letter a, or b, or ¢ to
represent any constant, it will simply disappear when
we differentiate.

If the additional constant had been of negative value,
such as —5 or — b, it would equally have disappeared.

Multiplied Constants.
Take as a simple experiment this case:
Let y="Ta2
Then on proceding as before we get:
y+dy="1(x+dx)
=T{x?+ 2x-dx+(dzx)?}
=T+ 14z -da+"7(dx)%
Then, subtracting the original y="7x2 and reglecting
the last term, we have
dy=14x-dx.
d

ey _
s 142
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Let us illustrate this example by working out the
graphs of the equations y=72? and Sll—g= l4z, by
assigning to x a set of successive values, 0, 1, 2, 3, ete,,

and finding the corresponding values of y and of Z_Z

These values we tabulate as follows:

a||Oo|1]2|23]|4]5 -1 -2 -3

y ||l 0| 7 |28)|63|112]175 7 28 63

20|14 2842|566 |70 || —14 | —28 | —42
dax

3y S et

!
v |
!
[
(] "
3 4

Fie. 6.—Graph of y="T7x2 F1e. 6a.—Graph of %:143.

Now plot these values to some convenient scale,
and we obtain the two curves, Figs. 6 and 6a.



WHAT TO DO WITH CONSTANTS 29

Carefully compare the two figures, and verify by
inspection that the height of the ordinate of the
derived curve, Fig. 6a, is proportional to the slope of
the original curve,* Fig. 6, at the corresponding value
of . To the left of the origin, where the original
curve slopes negatively (that is, downward from left
to right) the corresponding ordinates of the derived
curve are negative.

Now, if we look back at p. 19, we shall see that
simply differentiating a? gives us 2. So that the
differential coefficient of 7a? is just 7 times as big as
that of 22 If we had taken 8a?, the differential
coefficient would have come out eight times as great
as that of #% If we put y=aa? we shall get

dy

d—lll_=ax2w.

If we had begun with y=ax", we should have had
%=aan"‘1. So that any mere multiplication by
a constant reappears as a mere multiplication when
the thing is differentiated. And, what is true about
multiplication is equally true about division: for if,
in the example above, we had taken as the constant }
instead of 7, we should have had the same } come
out in the result after differentiation.

*See p. 77 about slopes of curves,
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Some Fuvther Examples.

The following further examples, fully worked out,
will enable you to master completely the process of
differentiation as applied to ordinary algebraical ex-
pressions, and enable you to work out by yourself the
examples given at the end of this chapter.

(1) Differentiate y:“%ﬁ_ S

g is an added constant and vanishes (see p. 26).

We may then write at once
- ody 1

1
da=7% X 5x "
ar (‘—;—Z:ga}‘.

(2) Differentiate y=an/z— %JE

The term %JE vanishes, being an added constant;

and as aa/z, in the index form, is written aa®, we

have
ay _ —aXixatle =P %t

de~""2 2
dy a
or do=5J5

®) If ay+br=by—ax+@+y)W -1,
find the differential coeflicient of y with respect to a.

As a rule an expression of this kind will need a
little more knowledge than we have acquired so far
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it is, however, always worth while to try whether the
expression can be put in a simpler form.

First we must try to bring it into the form y=some
expression involving « only.

The expression may be written

(a=b)y+(a+b)w=(z+y)~/ @b
Squaring, we get
(a—=byy*+(a+byx*+2(a+b)(a—b)xy
=(@"+y*+2xy)(a’ %),
which simplifies to
(a=BPy+ (@+b)a? =a*(a? 1) + (@ = );

or [(a—b)—(a’—b")]y*=[(a"—b")—(a+b)]a?
that is 2b(b—a)y*=—2b(b+a)x?;

hence y=,\/%m and %= ZTII:'

(4) The volume of a cylinder of radius » and height
h is given by the formula V=mr%h. Find the rate of
variation of volume with the radius when r=55 in,
and h=20 in. If r=A, find the dimensions of the
cylinder so that: a change of 1 in. in radius causes a
change of 400 cub. in. in the volume.

The rate of variation of V with regard to # is

av
W = 271"7"&.

If »=55 in. and A=20 in. this becomes 6908, It
means that a change of radius of 1 inch will cause a
change of volume of 690'8 cub. inch. This can be
easily verified, for the volumes with =5 and r=6
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are 1570 cub. in. and 2260'8 cub. in. respectively, and
22608 —1570=690'8.
Also, if

r=h, o2m=400 and r=h=y/0
dr

(5) The reading 6 of a Féry's Radiation pyrometer

is related to the Centigrade temperature ¢ of the

observed body by the relation

b-(0)

where 6, is the reading corresponding to a known tem-
perature ¢, of the observed body.

Compare the sensitiveness of the pyrometer at
temperatures 800" C., 1000° C., 1200° C., given that it
read 25 when the temperature was 1000° C.

The sensitiveness is the rate of variation of the

=798 in,

reading with the temperature, that is @ The formula

may be written dt

0.

':_14#___ 25¢4
1

0=7it"=1000v
and we have
df 100 [

dt ~ 10004~ 10,000,000,000

When ¢=2800, 1000 and 1200, we get %
and 01728 respectively.

The sensitiveness is approximately doubled from
800° to 1000°, and becomes three-quarters as great
again up to 1200°

=00512, 01
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Exercises II. (See p. 288 for Answers.)
Differentiate the following:

1) y=ax®+6. () y=13z%—c.
3) y= 122 + ¢t @) y= .
) u=""" (6) y=11882-+224

Make up some other examples for yourself, and try
your hand at differentiating them.

(7) If [, and [, be the lengths of a rod of iron at
the temperatures ¢°C. and 0°C. respectively, then
1,=1,(14+0°000012¢). Find the change of length of the
rod per degree Centigrade.

(8) 1t has been found that if ¢ be the candle power
of an incandescent electric lamp, and V be the voltage.
¢=aV? where ¢ and b are constants.

Find the rate of change of the candle power with
the voltage, and calculate the change of candle power
per volt at 80, 100 and 120 volts in the case of alamp
for which ¢=0'5x10-2 and b=6.

(9) The frequency = of vibration of a string of
diameter D, length L and specific gravity o, stretched
with a force 7', is given by

_1 T
"=DL N7
Find the rate of change of the frequency when D, L,

o and T are varied singly.
C.M.E.
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(10) The yreatest external pressure P which a tube

can support without collapsing is given by
2E \ &
P=(=3) 7

where E and o are constants, ¢ is the thickness of the
tube and D is its diameter. (This formula assumes
that 4¢ is small compared to D.)

Compare the rate at which P varies for a small
change of thickness and for a small change of diameter
taking place separately.

(11) Find, from first principles, the rate at which
the following vary with respect to a change in
radius :

(a) the circumference of a circle of radius r;

(b) the area of a circle of radius r;

(c) the lateral area of a cone of slant dimension 7;

(d) the volume of a cone of radius » and height 4 ;

(e) the area of a sphere of radius 7;

(f) the volume of a sphere of radius 7.

(12) The length L of an iron rod at the temperature
T being given by L=1[[1+0000012(7"—¢)], where I,
is the length at the temperature ¢, find the rate of
variation of the diameter D of an iron tyre suitable
for being shrunk on a wheel, when the temperature
T varies.



CHAPTER VL

SUMS, DIFFERENCES, PRODUCTS, AND
QUOTIENTS.

WE have learned how to differentiate simple alge-
braical functions such as a2?+c¢ or ax*, and we have
now to consider how to tackle the sum of two or
more functions.

For instance, let

y=@@"+c)+(ax'+b);

what will its % be? How are we to go to work

on this new job ?
The answer to this question is quite simple: just
differentiate them, one after the other, thus:

dy_ 3
o= 2z+4axd. (4Ans.)

If you have any doubt whether this is right, try
a more general case, working it by first principles.
And this is the way.

Let y=wu+v», where « is any function of x, and
v any ocher function of @. Then, letting « increase
to x+dx, y will increase to y+dy; and w wil)
increase to u+du; and @ to v+dw.
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And we shall have:

y+dy=u+dut+v+do.
Subtracting the original y=wu+wv, we get
dy=du+dy,
and dividing through by dx, we get:
dy _du +dv ,
dx ™ dx" dx
This justifies the procedure. You differentiate each
function separately and add the results. So if now
we take the example of the preceding paragraph, and
put in the values of the two functions, we shall have,
using the notation shown (p. 17),
dy _d(x*+c) , d(ax'+b)
de dx dx
=2 +4daxd,
exactly as before.
If there were three functions of @, which we may
call w, v and w, so that
Yy=u+v+w;
dy _du dv  dw
then d—; P P

As for the rule about subtraction, it follows at once
for if the function » had itself had a negative sign, its
differential coefficient would also be negative; so that
by differentiating

y=u—0o,
dy du dv

we should get L=

dx dx dx
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But when we come to do with Products, the thing
is not quite so simple.

Suppose we were asked to differentiate the expression

y=(2?+ ¢) X (ax*+ D),

what are we to do? The result will certainly mnot
be 2 X 4dax?; for it is easy to see that neither ¢ x ax?,
nor 2% X b, would have been taken inte that product.

Now there are two ways in which we may go
to work.

First way. Do the multiplying first, and, having
worked it out, then differentiate. )

Accordingly, we multiply together 2?+¢ and aa*+ b

This gives ax®+ acx*+ bx*+ be.

Now differentiate, and we get:

% = baxs + daca® + 2bzx.

Second way. Go back to first principles, and

consider the equation
Y=uxv;
where » is one function of 2, and v is any other
function of «. Then, if & grows to be x+dx; and
y to y+dy; and u becomes u+du; and v becomes
v+dv, we shall have:
Y+dy=u+du) x (v+dv)
=u-v+u-dv+o-du-tdu-dv.

Now du- dv is a small quantity of the second order
of smallness, and therefore in the limit may be
discarded, leaving '

y+dy=uv+u-dv+v-du.
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Then, subtracting the original y=wu-v, we have left
dy=u-dv+v-du;
and, dividing through by dz, we get the result:
dy dv du
dx d’v+vc—l._1;'

This shows that our instructions will be as follows:
To differentiate the product of two functions, multiply
each function by the differential coefficient of the
other, and add together the two products so obtained.

You should note that this process amounts to the
following : Treat w as constant while you differen-
tiate v ; then treat v as constant while you differentiate
u; and the whole differential coefficient % will be
the sum of the results of these two treatments.

Now, having found this rule, apply it to the
concrete example which was considered above.

We want to differentiate the product
(2> +¢) x (ax*+b).
Call (2*4+c¢)=u; and (ax*+b)=w.
Then, by the general rule just established, we
may write:
dy . » d(am +b) ot Jd(x+c)
dp= (@O = — +(axt + by ==
=(x?+c) 4sa,.7e3 +(ax*+b)2x
=4dax®+ 4acx® + 2ax5 + 2ba,
dy =6ax®+ dacx® +2bx,
dx

exactly as before,
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Lastly, we have to differentiate quotients.
b’ +c
r’+a’
it is no use to try to work out the division beforehand,
because x2+a will not divide into ba®+e¢, neither
have they any common factor. So there is nothing
for it but to go back to first principles, and find a
rule.

Think of this example, y= In such a case

So we will put y=%;
where 4 and » are two different functions of the
independent variable 2. Then, when x becomes
x+dx, y will become y+dy; and u will become
u+du; and v will become v+dv. So then
_u+du

y+dy_v+dv'

Now perform the algebraic division, thus:

w+du ‘3‘+0li‘—“'fl”
w-do 2 v
)

du_u-d'v

v+dv

du - dv
v

u-dv_du'dv

du+

v )
_u-dv_u-dv-dv
v 2
_du-dv u-dv-dv

v + v:
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As both these remainders are small quantities of
the second order, they may be neglected, and the
division may stop here, since any further remainders
would be of still smaller magnitudes.

So we have got:

u+du u-dv,
v v vt

y+dy=

which may be written
w v-du—u-do
=t -
Now subtract the original y=%, and we have left:

vedu—u-dv
dy=—,02—§

ST, dv
@= dr_“dz,

whence ) -
dx v®

This gives us our instructions as to how ¢o differ-
entiate a quotient of two functions. Multiply the
divisor function by the differential coefficient of
the dividend function; then multiply the dividend
Junction by the differential coeffictent of the divisor
function; and subtract the latter product from the
former. Lastly, divide the difference by the square of
the d?;msor Sfunction. b +o

Going back to our example y= Fra’

write b’ +c=u;
and 24 a=wv.
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Then

ay (2 +a) X T (b5+)(m+a)
daw ™~ (.12+a)2
_(@+a)(5bat)— (bm5+c)(2w)

(a’2 + a)2
dy 3baS+ 5abxt—2cx
de~  (@P+ap

The working out of quotients is often tedious, but
there is nothing difficult about it.

Some further examples fully worked out are given
hereafter.

d(bx +c)

(Answer.)

2 2
(1) Differentiate y= % =%+ a_z.
b b b
2
Being a constant, % vanishes, and we have

ZJ ;’2x3xac3 1—3x1xa(:1 -1,

But #'"'=a"=1; so we get:
dy _3a e a?
de" YT

(2) Differentiate y=2an/bax®— 5-325/—“ —2/ab.

Putting « in the index form, we get,

y=2a~/baxt— 30/ ax-1—2:/ab.
Now

dy _ =2an/bx 3 x 2t —3b/ax(—=1)xaz-1-1;

s
dy
or, o —3an/bm +3b“/ a
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(3) Differentiate z= 18\/ ~/9 —-27°.

This may be written: 2=186 t_ga0 27
The 27° vanishes, and we have

dz . .
T=18x - —ex 0 e (—pot
dz _ ~5 -88 -5
or, e —-120% 408867t
or de_088 12
’ NN

(4) Differentiate v=(3t2—1-2t+1)%

A direct way of doing this will be explained latet
(see p. 67); but we can nevertheless manage it now
without any difficulty.

Developing the cube, we get
v=27t5— 32'4¢° + 39'96¢* — 23'328¢3+13:32¢* — 3:6t+13
hence

AV _ 1605 — 16264+ 1598465 — 69-0842 + 26:64¢ — 36,

dt
(5) Differentiate y=(2x—3)(x+1)%
% ?))ol[(.7c+‘lj.lz'§ac+1)]_1_(.”4_1)2

d(ar:+l) (93+1 ]

d(2x—3)

(22

+(x +1)——
d(2w 3)

=(2x— 3)[( 41—

+H@+1y

=2(x+1)[(2x =3)+(x+1)]=2(x+ 1)(3.z'— 2);
or, more simply, multiply out and then differentiate,
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(6) Differentiate y= 0"—).1/3(1 —3).
L 05| -3
=05[a? +(w 3) X 3ut] = 2.,u —4-5x%
Same remarks as for preceding example.
. . 1 ~ 1
(7) Differentiate w= (0 + 0) (\\/ 0+ N 0)-
This may be written
w=(0+06"1)(6°+6*).

'2'
dw—(9+6 l)d(G +6 )

d( 7;3)

+(6;+0—Jy)¢l(6+6 D)

=(0+6-1)(30 2—-}-9 He @t +oHa—-e-2
=10 +0 -0 0 H 1 0T —0T—0h

— 1 1 1
=1(vo-75)+1(75~ 75)
This, again, could be obtained more simply by
multiplying the two factors first, and differentiating
afterwards. This is not, however, always possible;
see, for instance, p. 173, example 8, in which the
rule for differentiating a product must be used.

8) Differentiate y=—— & .
®) Y 1+ an/x+a%
312
F __d(1+ax"+a’x)
dy (A +ax*+a’x)x0 o=
dx— (14 an/x+ ax)?

__a@axtta?)

A +axt + a2y
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2

(9) Differentiate y= PR
@_(w2+1)2¢—w2x2w 2

do~ (FF1) @I
. . +a/2
10) Differentiate y=2T~2.
(10) Differentiate ¥ p—
3
In the indexed form, y=a+w .
a—xt
_o_li/=(a—w%)(%w"’})—(a-{-w’})(—%w‘}):a—w%+a+m*_
(a—aty 2(a - atyat
dy a
hence L=
dz (a—/z)
. . 1—ax/
11) Differentiate §=-—2".
(11) Differentiate 6 Tal/d
Now 0=1_at§-
1+ ath

a9 _(1+ath)(—3atH)—(1—at?) x 3att
dt (1+at)y?

NJ
6(1+a/t%)?

(12) A reservoir of square cross-section has sides
sloping at an angle of 45° with the vertical. The side

5azw_i,.‘g_9a:/z
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of the-bottom is 200 feet. Find an expression for the
quantity pouring in or out when the depth of water
varies by 1 foot; hence find, in gallons the quantity
withdrawn hourly when the depth is reduced from
14 to 10 feet in 24 hours.

The volume of a frustum of pyramid of height H,

and of bases 4 and g, is V=I_§I(A +a+A/da) 1tis

easily seen that, the slope being 45° if the depth be
h, the length of the side of the square surface of the
water is 200+ 2Ah feet, so that the volume of water is

§[2ooz+(2oo+2h)2+ 200(200 + 27)]

= 40,000k + 400h%+ = 4—‘@

Cg— 40,000+800/+4h? = cubic feet per foot of depth

variation. The mean level from 14 to 10 feet is

12 feet, when h=12, ZZ—SOJ 76 cubic feet.

Gallons per hour corresponding to a change of depth

of 4 ft. in 24 hours=4L()’l2Tx—625—= 52,267 gallons.

(13) The absolute pressure, in atmospheres, P, of
saturated steam at the temperature ¢°C. is given by
Dulong as being P =<é0—+—t>5 as long as ¢ is above

140

80°. Find the rate of variation of the pressure with
the temperature at 100° C.
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Expand the numerator by the binomial theorem
(see p. 141).

P=1—4165(405+5x404t+10x403t2+10x402t3
+5 x 40t +1°) ;
aP___1
dt — 337,824 x10°
(5 x $0% 420 x 40% - 30 x 4022+ 20 x 40¢* + 5¢4),

when #=100 this becomes 0036 atmosphere per
degree Centigrade change of temperature.

hence

Exercises III. (See the Answers on p. 289.)
(1) Differentiate

(@) u=l+x+7—5 z

T2t Txexst
) y=ax®+bx+ec. (©) y=(z+a)
(@) y=(x+a)’

(@) It w=at— b, find 2.

dt’
(8) Find the differential coefficient of
y=(@+~ =D x(@—~/=1).
(4) Ditterentiate
y=(1972— 342%) x (7+ 222 — 83x°).

(5) Tt m=(y+3) X (y+5), ﬁnd%l;—"

(6) Differentiate y=137092 x (1126 +45:20222),
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Find the differential coefficients of

_ 2243 _ 142+20%+43a®
M ¥=35+2 ® y="T o ros
_ax+b _a"ta

(11) The temperature ¢ of the filament of an in-
candescent electric lamp is connected to the current
passing through the lamp by the relation

C=a+bt+ct?

Find an expression giving the variation of the

current corresponding to a variation of temperature.

(12) The following formulae have been proposed to
express the relation between the electric resistance R
of a wire at the temperature ¢° C., and the resistance
R, of that same wire at 0° Centigrade, @ and b being
eonstants. R:Ro( 1+at +bt2)

R=R,(1 +at+b/?).
R=R,(1+at+bt?)-".

Find the rate of variation of the resistance with
regard to temperature as given by each of these
formulae.

(13) The electromotive-force E of a certain type of
standard cell has been found to vary with the tem-
perature ¢ according to the relation

FE=14340[1—-0000814(t—15)
+0:000007 (¢ —15)*] volts.

Find the change of electromotive-force per degree,

at 15°, 20° and 25°.
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(14) The electromotive-force necessary to maintain
an electric arc of length I with a current of intensity
¢ has been found by Mrs. Ayrton to be

E= +bl+c+kl

where a, b, ¢, k are constants.

Find an expression for the variation of the electro-
motive force (a) with regard to the length of the arc;
(b) with regard to the strength of the current,.



CHAPTER VII.
SUCCESSIVE DIFFERENTIATION.

LET us try the effect of repeating several times over
the operation of differentiating a function (see p. 14).
Begin with a concrete case.

Let y=a5.
First differentiation, 5x%
Second differentiation, 5 x 4a® = 20a3.
Third differentiation, 5 x4 x 3x? =602

Fourth differentiation, 5 x4 x3x2x =120x.
Fifth differentiation, 5x4x3x2x1=120.
Sixth differentiation, =0.

There is a certain notation, with which we are
already acquainted (see p. 15), used by some writers,
that is very convenient. This is to employ the
general symbol f(a) for any function of x. Here
the symbol f{ ) is read as “function of,” without
saying what particular function is meant. So the
statement y =/(x) merely tells us that y is a function
of x, it may be «? or ax® or cosx or any other com-
plicated function of .

The corresponding symbol for the differential co-

efficient is f“(x), which is simpler to write than %

This is called the “derived function” of a,
C.M.E. D
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Suppose we differentiate over again, we shall get
the “second derived function” or second differential
coefficient, which is denoted by f“(x); and so on.

Now let us generalize,

Let y=f(x)=a

First differentiation, f'(x)=nx"-L

Second differentiation, f"(x)=n(n—1)x"-2

Third differentiation, Jf"(x)=n(n—1)(n—2)x"-3.

Fourth differentiation,

S (@)y=n(n—-1)(n— ")(n 3)ar4
ete., ete.

But this is not the only way of indicating successive
differentiations. For,

if the original function be y=s(x);
once differentiating gives d_ =f(x);

a(%)

twice differentiating gives

=f"(x);
and this is more conveniently written as (dx)? or

2
more usually gy . Similarly, we may write as the

Sy
result of thrice differentiating, g ) — ().
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Examples.
Now let us try y=f(x)=Ta*+3 52> - L’ + =2

@=f'(w)=28w3+ 10522 -2 +1,

d’/-—f (x)=84a?+21x—1,

L ’4_ F(x)= 1682+ 21,

dcl/; _f////( ) 168

d 10177
%{—é =" (x)=0.

In a similar manner if y=¢(x)=3x(x?*—4),
¢(@)= 2 = 3w x 20+ (22— 4) x 1] =332t~ 4),

¢ ()= ‘—l--'/—sxﬁx_wm,

¢Ill(x): d ¢3= 18’

7, (l 7/
¢ (@)="1" -

Exercises 1V. (See page 289 for Answers.)

Fmd du and zll Z for the following expressions:
2
= 942 9y gyt
(1) y=172+122> @)y Pta
,113 ,1.4

® y=1+{ + 1o TxaRE t TROX IR

(4) Find the 2nd and 3rd derived functions in
the Exercises IIL (p. 46), No. 1 to No. 7, and in the
Examples given (p. 41), No. 1 to No. 7.



CHAPTER VIIL
WHEN TIME VARIES.

SoME of the most important problems of the calculus
are those where time is the independent variable, and
we have to think about the values of some other
quantity that varies when the time varies. Some
things grow larger as time goes on; some other things
grow smaller. The distance that a train has travelled
from its starting place goes on ever increasing as time
goes on. Trees grow taller as the years go by.
Which is growing at the greater rate; a plant 12
inches high which in one month becomes 14 inches
high, or a tree 12 feet high which in a year becomes
14 feet high ?

In this chapter we are going to make much use
of the word rate. Nothing to do with poor-rate, or
police-rate (except that even here the word suggests
a proportion—a ratio—so many pence in the pound).
Nothing to do even with birth-rate or death-rate,
though these words suggest so many births or deaths
per thousand of the population. When a motor-car
whizzes by us, we say: What a terrific rate! When
a spendthrift is flinging about his money, we remark
that that young man is living at a prodigious rate.
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What do we mean by rate? In both these cases we
are making a mental comparison of something that is
happening, and the length of time that it takes to
happen. If the motor-car flies past us going 10 yards
per second, a simple bit of mental arithmetic will
show us that this is equivalent—while it lasts—to a.
rate of 600 yards per minute, or over 20 miles per
hour.

Now in what sense is it true that a speed of
10 yards per second is the same as 600 yards
per miaute? Ten yards is not the same as 600 yards,
nor is one second the same thing as one minute.
What we mean by saying that the rate is the same,
is this: that the proportion borne between distance
passed over and time taken to pass over it, is the
same in both cases.

Take another example. A man may have only
a few pounds in his possession, and yet be able to
spend money at ithe rate of millions a year—provided
he goes on spending money at that rate for a few
minutes only. Suppose you hand a shilling over
the counter to pay for some goods; and suppose the
operation lasts exactly one second. Then, during
that brief operation, you are parting with your money
at the rate of 1 shilling per second, which is the
same rate as £3 per minute, or £180 per hour, or
£4320 per day, or £1,576,800 per year! If you have
£10 in your pocket, you can go on spending money
at the rate of a million a year for just 51 minutes.

It is said that Sandy had not been in London
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above five minutes when “bang went saxpence.” If
he were to spend money at that rate throughout a
day of 12 hours, he would be spending 6 shillings an
hour, or £3. 12s. per day, or £21. 12s. a week, not
counting the Sawbath.

Now try to put some of these ideas into differential
notation.

Let y in this case stand for money, and let ¢ stand
for time.

If you are spending money, and the amount you
spend in a short time df be called dy, the rate of

spending it will belfl ; or, as regards saving, with a

minus sign, as _%y
o dt’
not an increment. But money is not a good example
for the calculus, because it generally comes and goes
by jumps, not by a continuous flow—you may earn
£200 a year, but it does not keep running in all
day long in a thin stream; it comes in only weekly,
or monthly, or quarterly, in lumps: and your ex-
penditure also goes out in sudden payments.

A more apt illustration of the idea of a rate is
furnished by the speed of a moving body. From
London (Euston station) to Liverpool is 200 miles.
If a train leaves London at 7 o'clock, and reaches
Liverpool at 11 o'clock, you know that, since it has
travelled 200 miles in 4 hours, its average rate must
have been 50 miles per hour; because 222 =259, Here
you are really making a mental comparison between

because then dy is a decrement,
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the distance passed over and the time taken to pass
over it. You are dividing one by the other. If yis
the whole distance, and ¢ the whole time, clearly the

average rate is ‘% Now the speed was not actually

constant all the way: at starting, and during the
slowing up at the end of the journey, the speed was
less. Probably at some part, when running down-
hill, the speed was over 60 miles an hour. If, during
any particular element of time dt, the corresponding
element of distance passed over was dy, then at that
ill—zg. The rate at
which one quantity (in the present instance, distance)
is changing in relation to the other quantity (in this
case, time) is properly expressed, then, by stating the
differential coeflicient of one with respect to the other.
A welocity, scientifically expressed, is the rate at which
a very small distance in any given direction is being
passed over; and may therefore be written
dy
’U=m-

But if the velocity » is not uniform, then it must
be either increasing or else decreasing. The rate at
which a velocity is increasing is called the acceleration.
If a moving body is, at any particular instant, gaining
an additional velocity do in an element of time df,
then the acceleration @ at that instant may be written

T de’

part of the journey the speed was
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but dv is itself d(Z&) Hence we may put

dy
(gt
TTdr

. . . d?y .

and this is usually written a= g
or the acceleration is the second differential coefficient
of the distance, with respect to time. Acceleration is
expressed as a change of velocity in unit time, for
instance, as being so many feet per second per second ;

the notation used being feet +second?

When a railway train has just begun to move, its
velocity » is small; but it is rapidly gaining speed—it
is being hurried up, or accelerated, by the effort of the
engine. So its Lfl 7 is large. When it has got up its

top speed it is no longer being accelerated, so that

2
then le > has fallen to zero. But when it nears its

stopping place its speed begins to slow down; may,
indeed, slow down very quickly if the brakes are put
on, and during this period of deceleration or slackening

of pace, the value of L that is, of 0¢li —+swill be negative.

To accelerate a mass m requires the continuous
application of force. The force necessary to accelerate
a mass is proportional to the mass, and it is also
proportional to the acceleration which is being im-
parted. Hence we may write for the force f, the

expression f=ma;
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dv .
or f=”lm,

d2
or JS= mdt"

The product of a mass by the speed at which it is
going is called its momentum, and is in symbols mw.
If we differentiate momentum with respect to time
d(mv)

dt

mentum, But, since m is a constant quantity, this

we shall get for the rate of change of mo-

may be written m%, which we see above is the same
as f. That is to say, force may be expressed either
as mass times acceleration, or as rate of change of
momentum.

Again, if a force is employed to move something
(against an equal and opposite counter-force), it does
work; and the amount of work done is measured by
the product of the force into the distance (in its
own direction) through which its point of application
moves forward. So if a force f moves forward
through a length y, the work done (which we may

call w) will be w=fxy;
)

where we take f as a constant force. If the force
varies at different parts of the range y, then we must
find an expression for its value from point to point.
If f be the force along the small element of length
dy, the amount of work done will be fxdy. But as
dy is only an element of length, only an element of
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work will be done. If we write w for work, then an
element of work will be dw ; and we have

dw=fxdy;

which may be written
dw=ma- dy ;

or dw=m>Y d t . dy

dv
or dw= mo dy.
Further, we may transpose the expression and write

dw
dy ="

This gives us yet a third definition of force; that
if it is being used to produce a displacement in any
direction, the force (in that direction) is equal to the
rate at which work is being done per unit of length
in that direction. In this last sentence the word
»qgie is clearly not used in its time-sense, but in its
meaning as ratio or proportion.

Sir Isaac Newton, who was (along with Leibnitz)
an inventor of the methods of the calculus, regarded
all quantities that were varying as flowing; and the
ratio which we nowadays call the differential co-
efficient he regarded as the rate of flowing, or the
fluwion of the quantity in question. He did not use
the notation of the dy and dx, and d¢ (this was due
to Leibnitz), but had instead a notation of his own.
If y was a quantity that varied, or “flowed,” then his
symbol for its rate of variation (or “fluxion”) was
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9. If x was the variable, then its fluxion was called
2. The dot over the letter indicated that it had been
differentiated. But this notation does not tell us
what is the independent variable with respect to
whick the differentiation has been effected. When

we see % we know that y is to be differentiated with
respect to £. If we see z% we know that y is to be
differentiated with respect to 2. But if we see merely
9, we cannot tell without looking at the context
.. dy dy dy

whether this is to mean a5 % 2t d
the other variable. So, therefore, this fluxional no-
tation is less informing than the differential notation,
and has in consequence largely dropped out of use.
But its simplicity gives it an advantage if only we
will agree to use it for those cases exclusively where
time is the independent variable. In that case y will
dy . du . d*x
mean . and % will mean a0 and & will mean e
Adopting this fluxional notation we may write the
mechanical equations considered in the paragraphs

above, as follows:

or what is

distance @

velocity v=2=2,
acceleration a=0=2,
force = md=ma,

work w=x X mia.
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Examples.

(1) A body moves so that the distance x (in feet),
which it travels from a certain point O, is given by
the relation &=02¢2+104, where ¢ is the time in
seconds elapsed since a certain instant. Find the
velocity and acceleration 5 seconds after the body
began to move, and also find the corresponding values
when the distance covered is 100 feet. Find also
the average velocity during the first 10 seconds of
its motion. (Suppose distances and motlon tc the
right to be positive.)

Now x=02¢4+104,
v= w—c—l——OM and a=9'c'—dz =04 = constant,
dt dt?

When =0, =104 and v=0. The body started
from a point 104 feet to the right of the point O:
and the time was reckoned from the instant the
body started.

When ¢=5, v=04x5=2 ft./sec.; a=04 ft./sec
When =100, 100=02{24104, or =448,
and t=21'17 sec.; v=04x 21'17 = 8468 ft./sec.
When ¢=10,
distance travelled =02 x 1024104 — 104 =20 ft.
Average velocity = $$=2 ft./sec.
(It is the same velocity as the velocity at the middle
of the interval, ¢=5; for, the acceleration being con-

stant, the velocity has varied uniformly from zero
when (=0 to 4 ft./sec. when t=10.)
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{2) In the above problem let us suppose
=02+ 3¢+ 104
v=a’c=%=0'4t+3; a=5é=93$=0'4=constant.

When ¢=0, =104 and v=38 ft./sec., the time is
reckoned from the instant at which the body passed a
point 104 ft. from the point O, its velocity being then
already 3 ft./sec. To find the time elapsed since it began
moving, let ¥=0; then 0:4¢+3=0, t=—3=—T7'5 sec.
The body began moving 7-5 sec. before time was
begun to be observed; 5 seconds after this gives
t=—25and v=04x —2:54+3=2 ft./sec.

When a=100 ft.,

100=02£24+3t+10'4; or ?4+15(—448=0;
hence £=14'95 sec., v=0+x1495+43=898 ft./sec.

To find the distance travelled during the 10 first
seconds of the motion one must know how far the
body was from the point O when it started.

When t=—75,

£=02x(—T5)2—3xT5+104= —085 ft.,
that is 0-85 ft. to the left of the point O.

Now, when ¢=2'3,

x=02x2524+3%x25+104=1915.

So, in 10 scconds, the distance travelled was
19:15+0'85 =20 ft., and

the average velocity =29=2 ft./sec.

(8) Consider a similar problem when the distance
is given by x=02{—-3¢4+104. Then »=04¢-3,
a=04=constant. When =0, =104 as before, and
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v= —3; so that the body was moving in the direction
opposite to its motion in the previous cases. As the
acceleration is positive, however, we see that this
velocity will decrease as time goes on, until it becomes
zero, when v=0 or 0'4(—3=0; or =75 sec. After
this, the velocity becomes positive; and 5 seconds
after the body started, =125, and
v=04x125-3=2 ft./sec.
When 2=100,
100=02¢2—3¢t+10'4, or ?—15¢(—448=0,

and ¢=2995; v=04x2995—-3=898 ft./sec.

When v is zero,x=02%x 752—3x754+104= — 085,
informing us that the body moves back to 0-85 ft.
beyond the point O before it stops. Ten seconds later

t=175 and x=02x1752—-3x 175+ 104=1915.
The distance travelled='85+1915=20'0, and the
average velocity is again 2 ft./sec.

(4) Consider yet another problem of the same sort
with £=028-32+104; v=0682—6¢; a=12¢t—6.
The acceleration is no more constant.

When t=90, =104, v=0, a= —6. The body is
at rest, buc just ready to move with a negative
acceleration, that is to gain a velocity towards the
point O.

(5) If we have £=02¢*— 3¢+ 104, then v=06{2—3,
and a=12t,

When ¢=0, 2=104; v=—=38; a=09.

1ne body is moving towards the point O with
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a velocity of 3 ft./sec., and just at that instant the
velocity is uniform.

We see that the conditions of the motion can always
be at once ascertained from the time-distance equation
and its first and second derived functions. In the
last two cases the mean velocity during the first
10 seconds and the velocity 5 seconds after the start
will no more be the same, because the velocity is not
increasing uniformly, the acceleration being no longer
constant.

(6) The angle 6 (in radians) turned through by a
wheel is given by 6=3+2f{—0'1¢%, where ¢ is the
time in seconds from a certain instant; find the
angular velocity w and the angular acceleration o,
(o) after 1 second; (b) after it has performed one
revolution. At what time is it at rest, and how many
revolutions has it performed up to that instant ?

Writing for the acceleration

w=é=z—?=2—0'3t2, oc=9'=(c—l;—§= —06¢.
When £=0, 6=3; w=2 rad./sec.; aa=0.
When t=1,
0=2—-03=17 rad./sec.; .= —0°6 rad./sec
This is a retardation ; the wheel is slowing down.
After 1 revolution
0=27r=628; 628=342t—0'1¢£.

By plotting the graph, 6=3+42t—01¢%, we can get
the value or values of ¢ for which 0=6'28; these
are 2:11 and 303 (there is a third negative value).
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When ¢=2111,
0=628; w=2—134=066 rad./sec.;
o= —127 rad./sec%
When ¢=2303, '
0=628; w=2—2754= —0754 rad./sec.;
o= —1-82 rad./sec®
The velocity is reversed. The wheel is evidently
at rest between these two instants; it is at rest when
=10, that is when 0=2—-03t? or when ¢=2'58 sec.,
it has performed
6 3+2x258-01x258%

— — =1 2 .
o 698 1025 revolutions,

Exercises V. (See page 290 for Answers.)

(1) I y=a+betet; find 2 "/ and illt'z/
Amns. d'[ =20t +4et?; i:ﬁ*2b+120t2.

(2) A body falling freely in space deseribes in #
seconds a space s, in feet, expressed by the equation
s=16¢% Draw a curve showing the relation between
s and . Also determine the velocity of the body at
the following times from its being let drop: ¢=2
seconds; =46 seconds; £=001 second.

(3) If z=at—1gf; find 4 and &.

(4) If a body move according to the law

§=12—45¢+6:282,
find its velocity when ¢=4 seconds; s being in feet.
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(5) Find the acceleration of the body mentioned in
the preceding example. Is the acceleration the same
for all values of ¢?

(6) The angle 6 (in radians) turned through by
a revolving wheel is connected with the time ¢ (in
seconds) that has elapsed since starting, by the law

0=21—32¢t+48¢2

Find the angular velocity (in radians per second) of
that wheel when 1} seconds have elapsed. Find also
its angular acceleration.

(7) A slider moves so that, during the first part of
its motion, its distance s in inches from its starting
point is given by the expression

§=068*—10'8¢; ¢ being in seconds.

Find the expression for the velocity and the accelera~
tion at any time; and hence find the velocity and the.
acceleration after 3 seconds.

(8) The motion uf « rising balloon is such that its
height h, in miles, is given at any instant by the
expression h=054;~/t—125; ¢ being in seconds.

Find an expression for the velocity and the accelera-
tion at any time. Draw curves to show the variation
of height, velocity and acceleration during the first
ten minutes of the ascent.

(9) A stone is thrown downwards into water and
its depth p in metres at any instant ¢ seconas after
reaching the surface of the water is given by the
expression 4
p=m+ 0-8¢—1.

C.M.K, B
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Find an expression for the velocity and the accelera-
tion at any time. Find the velocity and acceleration
after 10 seconds.

(10) A body moves in such a way that the spaces
described in the time ¢ from starting is given by
s=t" where n is a constant. Find the value of »
when the velocity is doubled from the 5th to the 10th
second ; find it also when the velocity is numerically
equal to the acceleration at the end of the 10th second.



CHAPTER IX.
INTRODUCING A USEFUL DODGE.

SOMETIMES one is stumped by finding that the ex-
pression to be differentiated is too complicated to
tackle directly.

Thus, the equation

y=(a*+a’)}
is awkward to a beginner.
Now the dodge to turn the difficulty is this: Write
some symbol, such as u, for the expression x?+a?;
then the equation becomes

y=u},
which you can easily manage ; for

dy_3 3
%—2”/ o

Thaen tackle the expression
u=x*+a*
and differentiate it with respect to &

du_

dw 22-
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Then all that remains is plain sailing;
dy _ dy du

for do=du*dz’

. dy 3 3
that is, dn=3Y X 2z

=3(x*+ad)ix 2
=3x(x?+ a?)};
and so the trick is done.
By and bye, when you have learned how to deal

with sines, and cosines, and exponentials, you will
find this dodge of increasing usefulness.

Examples.

Let us practise this dodge on a few examples.
(1) Differentiate y= Na+w.

Let at+x=u.

du
%_1 y—u H d
dy _dy_ du 1

do—du do” adatz

=jut=§a+x)>

. . 1
(2) Differentiate y=:/m.
Let a+a*=u.
du o e Y
az-—‘w’ y=u; du ot
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(8) Differentiate y= (m —nat+ a%)“

Let m—nxt+pat=u.

‘,j’,—Z= — gt~ par¥;

y=u; —g%mm"'l.

dy dy_ dr a-1 .

day: d?ixd; “(””‘W“a%) (Gnat+4pet).
4) Differentiat 1
(4) Differentiate y= T

3__0/2
Let u=a3—a?

ZZTZ=39”2; y=ut; g% — (@ —ay

dy dz/ du _ Sac?
da=dudz = 2~/(.733—_a”‘)“’.

(5) Differentiate y=+/ -2

I+a
. . (1 _-,qg)r
Write this as g/:-(1 et
d(l x)t d(1+x)
| Sl ta
dy _ (1+2) ~(1-2) dx
dx 1+

(We.may also write y=(1 —w)%(l +.70)_‘17 and differ-
entiate as a product.)
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Proceeding as in exercise (1) above, we get

dl-ap 1 g dd+ay_ 1
dr  ~  o/1-=z’ dx o1+
Hence
dy_ _ _ Q4a (Q-ap
de= 2(l+awl-2 2(14+a)W/1+x
_ 1 _ ~/l—:1: .
T a1tz 2NA P
o W_ 1

do~ " (L+uWi-a?

a®

(6) Differentiate y= Tz

We may write this
y=w’3(1 +a07}
d _1 s d[(14+a22 -¥
ﬁ:gw%(uﬁ) by g AL+ 2] e I
Differentiating (14 %)%, as shown in exercise (2)
above, we get

d+a)t___ @ .
do Ja+7y
so that ’
dy_ 3w _ N _NJaB+a?)
do 2./14a A+ 241+




INTRODUCING A USEFUL DODGE
(7) Differentiate y=(x+~2*+2+a).
Let 2+ 2P+ t+a=u.
du_ .  dl(@®*+z+a)]
1t
=u3; and @_32&2_3( +~/T——'
Y ; du=W=3@+ 2+ x+af

Now let (x®+z+a)f=v and (2*+2+a)=w.

‘le 2w+1; v=w; d——§w}

dv_d
O =2 x W=+t ay 2w+ I

du 1+ 2x+1
dx™ o+ +a

dy dedu
dx du” dz

=@+ Fatap(1+etl )

Hence

1

ot vtz t+al

: 2
(8) Differentiate y= 4/ Zzi \/ Z: ¥ .'1,2'

We get
(@t 2D (a2—
T (a— )2+ x")&

C_l?_/ — (2 2 J;d[(a2 - -’)3‘2)—%] d[(a?+x2)¥]
dx (a?+2?) do +(a2 e

=(a?+ wz)%(az - “.2)—
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Let u=(a?—2?)% and v=(a®?—a2).
w=v d_u_ 1 _% d?)
- Cdo 6 dw
gl;y_du dv_1 o a3
de ™~ dv > d —w(a — @)
Let w=(a?+2*t and z=(a?+a?).
b Ww_1 4 dz_
W=2" & Te% dx
dﬂ)_Gl_’l,U @_1 2 2\~§
de~ dz x(lw_gw(a +a)
Hence

d_?/_ 2.4 2\
dm_(a +a7)

=2,

x + @ .
3(a?— mz){, 8(a?— .'1,'2)*(0(,2 +22)¢ 5

@ x /a2+
T dx 3 (a?— w2)7 N wz)(a2+m2)5]

(9) Differentiate y™ with respect to y°
d@y™) _ny" _m .
) By s

(10) Find the first and second differential coefficients

of y=%}~/(a—w)w.
dy _w d{l(a-2)al} , Sa=o)z,
dx b de b
Let [(a— x)2]* =w and let (4 — )@ =w; then u=wh

dw 20 2wt "o a—m)z
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dw
dx
@xczz_v_czgz a-%w_
dw” dx dx 24/ (a—x)x
Hence
dy  x(a—2x)  ~la—x)x_ 2(30a—47)
%—QbJ(a—w)w b 20 (a—x)w
Now ,
&y 26/ (a——w)w.(f}a —8x)— (B :/‘iz -)—bw()aw— 22)
dat™ 4b*(a—ax)x

_ — 122+ Sa?
4b(a—x)a/(a—x)x

(We shall need these two last differential coefficients
later on. See Ex. X. No. 11.)

Exercises VI. (See page 291 for Answers.)
Differentiatc the following:

1) y=Aa2+1. (2) y=A2*+a?

1 -t .

@ v=Terz ®r=-Tea

~/w a, Nt ta

(5) Yy=———= (6) y= Jw3+a
) y=l_'*i’”_

(a+xy
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(8) Differentiate y° with respect to %2

2
(9) Differentiate y—“/l 60

The process can be extended to three or more
dy dy dz v

differential coefficients, so that dv=ds g v % T
Examples.
(1) Tf z=8a; v=-; y=~/TF9, find %.
) 22 s dx
We have

dy 1 dv_ 14, dz_
dv 2J1+q; - @ dx 1243

dy _ 168z* 28
de~ ~ 2J/1+v)s 325/ +7
Ta? dv
b — — fin .
@) If t= 5~/9,w t+2,v T T d
dv _Tx(50—6) dr_ dt 1

dx~ 3 (@—1y 1)4’ dt 3+ 8~ 1068
dv_ Te(52—6)(3t°+1)
Hence a0~ " 30 Vw1 /O )
an expression in which x must be replaced by its
value, and ¢ by its value in terms of 6.

Satx JI= 6
3) If O_Ja:"" 0="31g and ¢= J3—72

find %




INTRODUCING A USEFUL DODGE 75

We get L
-1, — 1—6-
0=3a%c 2 w= 1-_|-_6, and P= ;\/3-—-7
a9_ _ 8a*  do_ 1
de  o/z3’ d0  (1+0)/1—6°
(see example 5, p. 69); and
dp__1
do o 2w?
dp 1 1 3a?
So that —-
O T Jaxe A+ oVI=0  ad/at
Replace now first w, then 0 by its value.

Exercises VII.
You can now successfully try the following. (See
page 291 for Answers.)

1 dw
— 3 . —_ 2Y —_ .
(1) If u=4a®; v=3(u+u?); and w=s, find 7

. - — 1

2) If y=3x? 2; z=A1+y; and v=—pm—-—.

()l y=322+~/2; z=a/T+y; and v T
find éﬂ-

fna 0

1
3) If y= ,./3’z (14y)y;and u-—:/I-,;N s

T2



CHAPTER X.
GEOMETRICAL MEANING OF DIFFERENTIATION,

It is useful to consider what geometrical meaning can
be given to the differential coefficient.

In the first place, any function of , such, for
example, as a%, or Nz, or ax+b, can be plotted as
& curve; and nowadays every schoolboy is familiar
with the process of curve-plotting.

Y

Fa 7.

Let PQR, in Fig. 7, be a portion of a curve plotted
with respect to the axes of coordinates OX and OY.
Consider any point @ on this curve, where the
abscissa of the point is # and its ordinate is y.
Now observe how y changes when x is varied. If @
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is made to increase by a small increment dx, to the
right, it will be observed that ¥ also (in this particular
curve) increases by a small increment dy (because this
particular curve happens to be an ascending curve).
Then the ratio of dy to dx is a measure of the degree
to which the curve is sloping up between the two
points @ and 7. As a matter of fact, it can be seen
on the figure that the curve between @ and 7' has
many different slopes, so that we cannot very well
speak of the slope of the curve between @ and 7' If,
however, @ and T are so near each other that the
small portion @7 of the curve is practically straight,
dy
d
the curve along Q7. The straight line Q7 produced
on either side touches the curve along the portion @7
only, and if this portion is indefinitely small, the
straight line will touch the curve at practically
one point only, and be therefore a tangent to the
curve.

This tangent to the curve has evidently the same

slope as @7, so that

then it is true to say that the ratio = is the slope of

a_:g; is the slope of the tangent to

d
the curve at the point @ for which the value of Z—Z

found. )

We have seen that the short expression “the slope
of a curve” has no precise meaning, because a curve
has so many slopes—in fact, every small portion of a
curve has a different slope. “The slope of a curve at
o point” is. however, a perfectly defined thing; it is

is
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the slope of a very small portion of the curve situated
just at that point; and we have seen that this is the
same as “the slope of the tangent to the curve at that
point.”

Observe that da is a short step to the right, and
dy the corresponding short step upwards. These
steps must be considered as short as possible—in fact
indefinitely short,—though in diagrams we have to
represent them by bits that are not infinitesimally
small, otherwise they could not be seen.

We shall hereafter make considerable wuse of this

circumstance that @/ represents the slope of the curve
at any point.

Y
dy

F1a. 8.

If a curve is sloping up at 45° at a particular point,
as in Fig. 8, dy and dx will be equal, and the value

ofgz_
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If the curve slopes up steeper than 45° (Fig. 9)

dy .
v will be greater than 1.

Y Y]
Pl [

(o) — x O =
F1a. 9. Fia. 10.

If the curve slopes up very gently, as in Fig. 10,
g—g will be a fraction smaller than 1.

For a horizontal line, or a horizontal place in a

@ _o,

curve, dy =0, and therefore dx

o

Fig. 11.

If a curve slopes downward, as in Fig. 11, dy will
be a step down, and must therefore be reckoned of
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:les,gf)ative value; hence g% will have negative sign

If the “curve” happéns to be a straight line, like

that in Fig. 12, the value of % will be the same b

all points along it. In other words its slope is constant.
Y

O X
Fia. 12,

If a curve is one that turns more upwards as it

goes along to the right, the values of g—g will become
Y]

dy

6 ' X

Fia. 13.
- greater and greater with the increasing steepness, as
in Fig. 18.
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I a curve is one that gets flatter and flatter as it

goes along, the values of dy will become smaller and

dx
smaller as the flatter part is reached, as in Fig, 14

Y| Y

|
]

\Q\ l

H 1

: : i

i Y min !

! ! ! !

(0 X O X
Fic. 14, Fia. 15.

b - -

If a curve first descerds, and then goes up again,
as in Fig. 15, presentiny a concavity upwards, then
clearly 5_;/, will first be negative, with diminishing

values as the curve flattens, then will be zero at the
point where the bottom of the trough of the curve is

reached; and from this point onward % will have

positive values that go on increasing. In such a casey
is said to pass through a mintmum. The minimum
value of y is not necessarily the smallest value of y,
it is that value of y corresponding to the bottom of
the trough; for .instance, in Fig. 28 (p. 101), the
value of y corresponding to the bottom of the trough
is 1, while y takes elsewhere values which are smaller
than this. The characteristic of a minimum is that

y must increase on either side of it.
C.M.E. F



82 CALCULUS MADE EASY

N.B—For the particular value of x that mag3s

y % manimum, the value of lez =0.

If a curve first ascends and then descends, the
. values of g% will be positive at first; then zero, as

th; summit is reached; then negative, as the curve
slcpes downwards, as in Fig. 16. In this case y .is
said to pass through a maximum, but the maximum
value of y is not necessarily the greatest value of y.
In Fig. 28, the maximum of y is £}, but this is by no
means the greatest value y can have at some other
point of the curve.

Y Y

)
i
1
! .
O X O X

F1a. 16. Fre. 17.
N.B.—For the particular value of x that makes
y & maximum, the value of %’;—/ =0.
If a curve has the particular form of Fig. 17, the

values of g—z will always be positive; but there will
be one particular place where the slope is least steep,
% will be a minimum ; that 1s,
less than it is at any other part of the curve.

where the value of
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If a curve has the form of Fig. 18, the value of %
will be negative in the upper part, and positive in the
lower part; while at the nose of the curve where it
Z—Z will

becomes actually perpendicular, the value of
be infinitely great.

Y

(o) X
Fic. 18,

Now that we understand that Z—E measures the

steepness of a curve at any point, let us turn to some
of the equations which we have already learned how
to differentiate.

(1) As the simplest case take this:
y=x+Db.
It is plotted out in Fig. 19, using equal scales
for 2 and y. If we put =0, then the corresponding

ordinate will be y=b; that is to say, the “curve”
crosses the y-axis at the height 6. From here it
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ascends at 45°; for whatever values we give to « to
the right, we have an equal y to ascend. The line
has a gradient of 1 in 1.

Now differentiate y=x+5, by the rules we have

already learned (pp. 22 and 26 ante), and we get % =1

The slope of the line is such that for every little
step dx to the right, we go an equal little step dy
upward. And this slope is constant—always the
same slope.

Y] Y

L

(2) Take another case:

. y=ax+b.
We know that this curve, like the preceding one, will
start from a height b on the y-axis. But before we
draw the curve, let us find its slope by differentiating ;

1

X o X
Fig. 19. Fia. 20,

which gives us %=m The slope will be constant, at

an angle, the tangent of which is here called a. Let
us assign to @ some numerical value—say 3. Then we
must give it such a slope that it ascends 1 in 3; or
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dx will be 3 times as great as dy; as magnified in
Fig. 21. So, draw the line in Fig. 20 at this slope.

(8) Now for a slightly harder case.

Let y=ax’+b.

Again the curve will start on the y-axis at a height
b above the origin.

Now ditferentiate. [If you have forgotten, turn
back to p. 26; or, rather, don’t turn back, but think
out the differentiation.]

dy

dr= 2azx.

Y

0 ' X.
Fie. 22,

This shows that the steepness will not be constant:
it increases as @ increases. At the starting point P,
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where =0, the curve (Fig. 22) has no steepness
—that is, it is level. On the left of the origin, where-

« has negative values, @l will also have negative

dx
values, or will descend from left to right, as in the
Figure.
Let us illustrate this by working out a particular
instance. Taking the equation
y=éw2+3)

and differentiating it, we get

d

;Z%=§w.
Now assign a few successive values, say from 0 to
5, to «; and calculate the corresponding values of y
by the first equation; and of % from the second

equation. Tabulating results, we have:

x o | 1 2 3 4 5

y |l 3 3| a || 7| 9

d
ﬂ-’/ogll;zzg

Then plot them out in two curves, Figs. 23 and 24
in Fig. 23 plotting the values of y against those of .

and in Fig. 24 those of g—g against those of z. For
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any assigned value of a, the height of the ordinate
in the second curve is proportional to the slope of the
first curve.

G- cosnass

I'1e. 23. Fic. 24.

If a curve comes to a sudden cusp, as in Fig. 25,
the slope at that point suddenly changes from a slope

Y

(0} X
Fic. 25.

upward to a slope downward. In that case % will

clearly undergo an abrupt change from a positive te
a negative value.
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The following examples show further applications
of the principles just explained.

(4) Find the slope of the tangent to the curve
1 N
Y=g, T3

at the point where z= —1. Find the angle which this
tangent makes with the curve y=2a2+2.

The slope of the tangent is the slope of the curve at
the point where they touch one another (see p. 77);

that is, it is the g{% of the curve for that point. Here
dy 1 dc/ 1 L.

dn= "o and for x= -1, dp= "3 which is the
slope of the tangent and of the curve at that point.
The tangent, being a straight line, has for equation

y=ax+b, and its slope is %=a, hence g = —%. Also
if x=-1, y= 2(11)+3 2%; and as the tangent

passes by this point, the coordinates of the point must
satisfy the equation of the tangent, namely

go that 2} = —-x( 15+b and b=2; the equation of
the tangent is therefore y= — ')(:+2

Now, when two curves meeﬁ, the intersection being
a point common to both curves, its coordinates must
satisfy the equation of each one of the two curves;
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that is, it must be a solution of the system of simul-
taneous equations formed by coupling together the
equations of the curves. Here the curves meet one
another at points given by the solution of

{y=2x2+2,
y=—4tx+2 or 22°+2=—3x+2;

that is, x(2x+1)=0.

This equation has for its solutions £=0and x=—4%.
The slope of the curve y=2x2+2 at any point is

For the point where 2 =0, this slope is zero; the curve
is horizontal. For the point where

1 dy_
o O
hence the curve at that point slopes downwards to
the right at such an angle 6 with the horizontal that
tan 6=1; that is, at 45° to the horizontal.

The slope of the straight line is — § ; that is, it slopes
downwards to the right and makes with the horizontal
an angle ¢ such that tan ¢=3%; that is, an angle of
26° 34'. It follows that at the first point the curve
cuts the straight line at an angle of 26° 34, while at
the second it cuts it at an angle of 45°—26° 34'=18" 26"

(5) A straight line is to be drawn, through a point
whose coordinates are =2, y= —1, as tangent to the
curve y=x2—5x+6. Find the coordinates of the
point of contact.
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The slope of the tangent must be the same as the
% of the curve; that is, 22— 5.
The equation of the straight line is y=ax+b, and

as it is satisfied for the values =2, y=—1, then

. Lody "
—1=ax2+b; a,lso,lts(%—a—2w 5.

The x and the y of the point of contact must also
satisfy both the equation of the tangent and the
equation of the curve.

We have then
Y=22—=52+6, .ccocvrrininnnnn. @)
Y=ax+b, .coovvviiniiiininnnns (ii)
—1=2a+bd, .....evvvvivinrnannn. (ii1)
a=2x—5, .....ociiiiiiiinnns (iv)

four equations in a, b, x, ¥.

Equations (i) and (ii) give #*— 52+ 6 =ax+b.
Replacing @ and b by their value in this, we get
x?—5x+6=2r—5)x—1-2(2x-5),
which simplifies to #*—4x+3=0, the solutions of
which are: =3 and 2=1. Replacing in (i), we get
¥ =0 and y =2 respectively ; the two points of contact

are then x=1, y=2; and =3, y=0.

Note—In all exercises dealing with curves, students
will find it extremely instructive to verify the dedue-
tions obtained by actually plotting the curves.
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Exercises VIII. (See page 291 for Answers.)

(1) Plot the curve y=3$x?—5, using a scale of
millimetres. Measure at points corresponding to
different values of a, the angle of its slope.

Find, by differentiating the equation, the expression
for slope ; and see, from a Table of Natural Tangents,
whether this agrees with the measured angle.

(2) Find what will be the slope of the curve
y=0122%—2,
at the particular point that has as abscissa x=2.
(8) If w=(x—a)(x—>b), show that at the particular
point of the curve where c_lg=0' 2 will have the value
/ dx
3(a+b).
(4) Find the z—% of the equation y=a*+3x; and

calculate the numerical values of g'—;{ for the points

corresponding to =0, z=4%, x=1, x=2.

(5) In the curve to which the equation is x?+y*=4,
find the values of x at those points where the slope=1.

(6) Find the slope, at any point, of the curve whose
2 2
equation is §§+g§=1; and give the numerical value

of the slope at the place where «=0, and at that
where x=1.

(7) The equation of a tangent to the curve
y=>5—2x+05x% being of the form y=ma+n, where
m and n are constants, find the value of m and n if
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the point where the tangent touches the curve has
x=2 for abscissa.

(8) At what angle do the two curves
y=385x*+2 and y=a’-52+95
cut one another ?
(9) Tangents to the curve y= + +/25 — % are drawn
at points for which #=3 and =4, the value of y being

positive. Find the coordinates of the point of inter-
section of the tangents and their mutual inclination.

(10) A straight line y=2x—b touches a curve
y=3x%+2 at one point. What are the coordinates
of the point of contact, and what is the value of &?



CHAPTER XL
MAXIMA AND MINIMA.

A QUANTITY which varies continuously is said te
pass by (or through) a maximum or minimum value
when, in the course of its variation, the immediately
preceding and following values are both smaller or
greater, respectively, than the value referred to. An
infinitely great value is therefore not a maximum
value. Y
One of the principal uses P —-
of the process of differen- ¢
tiating is to find out under s
what conditions the value 4}
3

2

of the thing differentiated
becomes a maximum, or a
minimum. This is often ex-
ceedingly important in en-
gineering questions, where
it is most desirable to
know what conditions will make the cost of working
a minimum, or will make the efficiency a maximum.

Now, to begin with a concrete case, let us take the
equation y=a?—dx+T.

By assigning a number of successive values to a,
and finding the corresponding values of y, we can

-~ fe=——==r-
Wl mm—————
| et

2 X

Fia. 26.
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readily see that the equation represents a curve with
& minimum.

@ ol 1]2 3 4| 5

yl 7434|712

These values are plotted in Fig. 26, which shows
that y has apparently a minimum value of 3, when 2
is made equal to 2. But are you sure that the
minimum occurs at 2, and not at 2} or at 1§ ?

Of course it would be possible with any algebraic
expression to work out a lot of values, and in this
way arrive gradually at the particular value that
may be & maximum or a minimum.

Fia. 27.
Here is another example :
Let y=3x—x%

Calculate a few values thus:

x -1]0}1|2]3 4 b

yll ~ajo|2|e|lo]| -4|-10
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Plot these values as in Fig. 27.

It will be evident that there will be a maximum
somewhere between x=1 and x=2; and the thing
looks as if the maximum value of y ought to be
about 2}. Try some intermediate values. If z=1%,
y=2187; if x=14 y=225; if =16, y=224.
How can we be sure that 2:25 is the real maximum,
or that it occurs exactly when x=1%?

Now it may sound like juggling to be assured that
there is a way by which one can arrive straight at a
maximum (or minimum) value without making a lot of
preliminary trials or guesses. And that way depends
on differentiating. Look back toan earlier page (81) for
the remarks about Figs. 14 and 15, and you will see
that whenever a curve gets either to its maximum

or to its minimum height, at that point its Z—Z =0,

Now this gives us the clue to the dodge that is
wanted. When there is put before you an equation,
and you want to find that value of x that will make
its ¥ a minimum (or a maximum), first differentinte

4t, and having done so, write its g"’z as equal to zero,
and then solve for x. Put this particular value of x
into the original equation, and you will then get the
required value of y. This process is commonly called
“equating to zero.”

To see how simply it works, take the example with

which this chapter opens, namely
y=a?—4dax+7.
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Differentiating, we get:

Now equate this to zero, thus:
2x—4=0.
Solving this equation for x, we get:
2x=4,
x=2,
Now, we know that the maximum (or minimum)
will occur exactly when x=2.
Putting the value =2 into the original equation,

we get y=22—(4x2)+7
=4—38+7
=3.

Now look back at Fig 26, and you will see that the
minimum occurs when £=2, and that this minimum

of y=3.
Try the second example (Fig. 24), which is
y=3x—z%
Differentiating, ay_ 3—2x,
dx
Equating to zero,
3—2x=0,
" whence x=1};
and putting this value of 2 into the original equation,
we find: y=43—(1x1),
y=2¢

This gives us exactly the information as to which
the method of trying & lot of values left us uncertain.
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Now, before we go on to any further cases, we have
two remarks to make. When you are told to equate

g—g; to zero, you feel at first (that is if you have any

wits of your own) a kind of resentment, because you

know that z—z has all sorts of different values at

different parts of the curve, according to whether it
is sloping up or down. So, when you are suddenly
told to write dy

=0,

dx

you resent it, and feel inclined to say that it can’t be
true. Now you will have to understand the essential
difference between “an equation,” and “an equation
of condition.” Ordinarily you are dealing with equa-
tions that are true in themselves; but, on occasions,
of which the present are examples, you have to write
down equations that are not necessarily true, but are
only true if certain conditions are to be fulfilled ; and
you write them down in order, by solving them, to
find the conditions which make them true Now we
want to find the particular value that x has when
the curve is neither sloping up nor sloping down, that

is, at the particular place where dy _ =0. So, writing

dx
filJ 0 does mot mean that it always is =0; but you

write it down as a conohtwn in order to see how
much & will come out Jf is to be zero,

d.’L'

C.M.E. G
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The second remark is one which (if you have any
wits of your own) you will probably have already
made: namely, that this much-belauded process of
equating to zero entirely fails to tell you whether
the 2 that you thereby find is going to give you
a maxzimum value of y or a minimum value of y.
Quite so. It does not of itself discriminate; it finds
for you the right value of x but leaves you to find
out for yourselves whether the rorresponding y is a
maximum or a minimum. Of course, if you have
plotted the curve, you know already which it will be.

For instance, take the equation :

1
Y= 4x +5.
Without stopping to think what curve it corre-
sponds to, differentiate it, and equate to zero:

dy _ 2_a_L_p.
%—4—50 =4 w2—0,

whence x=1;
and, inserting this value,

y=4
will be either a maximum or else a minimum. But
which? You will hereafter be told a way, depending
upon a second differentiation, (see Chap. XIL, p. 112).
But at present it is enough if you will simply try
any other value of x differing a little from the one
found, and see whether with this altered value the

corresponding value of y is less or greater than that
already found,
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Try another simple problem in maxima and minima.
Suppose you were asked to divide any number into
two parts, such that the product was a maximum ?
How would you set about it if you did not know
the trick of equating to zero? I suppose you could
worry it out by the rule of try, try, try again. Let
60 be the number. You can try cutting it into two
parts, and multiplying them together. Thus, 50 times
10 is 500; 52 times 8 is 416; 40 times 20 is 800; 45
times 15 is 675; 30 times 30 is 900. This looks like
a maximum: try varying it. 31 times 29 is 899,
which is not so good; and 32 times 28 is 896, which
is worse. So it seems that the biggest product will
be got by dividing into two equal halves. .

Now see what the calculus tells you. Let the
number to be cut into two parts be called n. Then
if « is one part, the other will be % —x, and the product
will be x(n—x) or nc—a? So we write y=nx—a2
Now differentiate and equate to zero;

W o=
d—w =n—2x=0.
Solving for x, we get g’=w.

So now we know that whatever number n may be,
we must divide it into two equal parts if the product
of the parts is to be a maximum; and the value of
that maximum product will always be = in

This is a very useful rule, and appliec to any number
of factors, so that if m+n+p=a constant number,
mXnXp is a maximum when m=n=p.
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Test Case.

Let us at once apply our knowledge to a case that
we can test.

Let y=a2—2x;
and let us find whether this function has a maxiinum
or minimum ; and if so, test whether it is a maximum
or a minimum, :

Differentiating, we get

%{} =2¢~1
Equating to zero, we get
20—1=0,
whence 2=1,
or =1

That is to say, when x is made =1, the corresponding
value of y will be either a maximum or a minimum.
Accordingly, putting =1 in the original equation. we
get =31

or y=—1

Is this a maximum or & minimum? To test it, try
putting @ a littie bigger than },—say make x=0¢
Then  y=(06)*~-06=036—06=—024,
which is higher up than —025; showing thal
y=—025 is a minimum.

Plot the curve for yourself, and verify the cal-
culation.
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Further Examples.
A most interesting example is afforded by a curve
that has both a maximum and a minimum. Its

equation is: y=3a3 -2+ 3x+1.
d.’[_ 2
Now dn=% —~4x43.
-
)
)
[ ]
[}
'
[ ]
(]
[]
!
0
i
o2
s X
?
| -2
H
' -3
Y )

Fie. 28.

Equating to zero, we get the quadratie,

2:—4x+3=0;
and solving the quadratic gives us fwo roots, viz.
{m =3
x=1.

Now, when =3, y=1; and when x=1, y=23%
The first of these is a minimum, the second a

maximum.
The curve itself may be plotted (as in Fig. 28)
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from the wvalues cdlculated, as below, from the
original equation.

@ -1 0|1 2134|516

y|-4]|!

2y (13| 1 | 23|73 |19

A further exercise in maxima and minima is
afforded by the following example :

‘The equation to a circle of radius #, having its
centre C at the point whose coordinates are x=a,
y=>, as depicted in Fig. 29, is:

(y—by+(@—a)=1r>%
This may be transformed into
y=ri—(x—a)l+b.
Y|

0]

Fre, 29,

Now we know beforehand, by mere inspection of
the figure, that when z=a, y will be either at its
maximum value, b+47, or else at its minimum
value, b—7. But let us not take advantage of this
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knowledge; let us set about finding what value
of x will make y a maximum or a minimum, by the
process of differentiating and equating to zero.

dy 1 1

—_— %X (2a—2
due™ 2/r=(x— a)zx( a2,
which reduces to
dy a—x

&~ T —Gw=aF

Then the condition for y being maximum or
minimum is:
a—x

Nr—@=ay

Since no value whatever of x will make the de-
nominator infinite, the only condition to give zero is

r=a.
Inserting this value in the original equation for
the circle, we find
y=n7r+0b;

and as the root of 7% is either 47 or —#, we have
two resulting values of y,
{y=b+r
y=b—r
The first of these is the maximum, at the top;
the second the minimum, at the bottom.
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If the curve is such that there is no place that is a
maximum or minimum, the process of equating to
zero will yield an impossible result. For instance:

Let y=ax*+bx+ec.

Then zll”

Equating this to zero, we get 3ax?+b=0, 2=

-3ax’+b.

-b
°__ 3a’
and = \/ ;_ab., which is impossible, supposing & and &
to have the same sign.

Therefore ¥ has no maximum nor minimum,

A few more worked examples will enable you to
thoroughly master this most interesting and useful
application of the calculus.

(1) What are the sides of the rectangle of maximum
area inscribed in a circle of radius R?

1f one side be called @,

the other side=+/ (hdiagonal)‘2 X%
and as the diagonal of the rectangle is necessarily a
diameter, the other side = /4 RZ— 22
Then, area of rectangle S =xn/4RI— 22,
ds d(WiR*=a?
PRl

If you have forgotten how to differentiate /3R> — 7

here is 8 hint: write 4R*—a?=w and y=/2, and

dy dw
seek O—Z—— and —— 7z

get on refer to page 67.

SRy o IO
dx

fight it out, and only if you can’
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You will get ‘

2 _ 92
o=~ Y R s
For maximum or minimum we must have
AR —22%
NART a2

that is, 4R?—2x2=0 and = Ra/2.

The other side =A/4R2—2R2=Ra/2; the two sides
are equal; the figure is a square the side of which is
equal to the diagonal of the square constructed on the
radius. In this case it is, of course, a maximum with
which we are dealing.

(2) What is the radius of the opening of a conical
vessel the sloping side of which has a length 7 when
the capacity of the vessel is greatest ?

If R be the radius and H the corresponding height,
H=\P-R

Volume V=7R2x %’ =7R?x

E—R?
=

Proceeding as in the previous problem, we get

av P2 R 27rR
aR~TEx gty VPR
_2rR(P—RY)— sz o
3J/P—R?

for maximum or minimum.

Or, 27 R(2— R?)—7R®*=0,and R=1IA/%, for a maxi-
mum, obviously.
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(8) Find the maxima and minima of the function

x  d—x
=
We get
dy (4—-2)—(—2) —x— (4« x)
do= G-y T =0
for maximum or minimum ; or
4

(4——-_.’1,’)2__—2=0 and =2,

There is only one value, hence only one maximum
or minimum.
For z=2, y=2
for x=145, y=227,
for =25, y=227;

it is therefore a minimum. (It is instructive to plot
the graph of the function.)

(4) Find the maxima and minima of the function

=a1+z+~/T—2 (It will be found instructive to
plot the graph.)

Differentiating gives at once (see example No. 1,

. 68)
P dy 1 1

dr 2/1+z 21—z
for maximum or minimum.
Hence &/1+2=a/1 -2 and 2=0, the only solution,
For =0, y=2.
For = +0'5, y=1'932, so this is a maximum.
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(5) Find the maxima and minima of the function

x?—5
Y= %e—%
We have
dy _(2x—4) X 230—(.902—5)2:0
dx (2 —4)?
for maximum or minimum ; or
2w2—8w+10_0 .
Qu—4y
or 22—4x+45=0; which has for solutions
‘ x=5+—1
These being imaginary, there is no real value of 2
dy

for which d:L':O; hence there is neither maximum nor
minimum.

(6) Find the maxima and minima of the function

(y—a?}=a"
This may be written y=ax?+at.
Z—';{ =2+ §at =0 for maximum or minimum ;

that is, £(2+52%)=0, which is satisfied for =0,
and for 24+ 5a%=0, that is for x=1%. So there are
two solutions.

Taking first £=0. If x=—05,y=025+/—(3),
and if =405, y=0‘25if/F5_‘)? On one side y is
imaginary ; that is, there is no value of y that can be
represented by a graph ; the latter is therefore entirely
on the right side of the axis of y (see Fig. 30).

On plotting the graph it will be found that the
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curve goes to the origin, as if there were a minimum
there ; but instead of continuing beyond, as it should
do for a minimum, it retraces its steps (forming what
is called a “cusp”). There is no minimum, therefore,
although the condition for a minimum is satisfied,

namely E%.:O. It is necessary therefore always to

check by taking one value on either side.

4
03

02

01

0 02 04 96 08 10\ x

Fic. 30.

Now, if we take £=18=06+ If x=064,y=07373
and y =0'0819; if =06, ¥ becomes 06389 and 00811,
and if =07, y becomes 0-8996 and 0-0804.

This shows that there are two branches of the curve,
the upper one does not pass through a maximum, but
the lower one does.

(7) A cylinder whose height is twice the radius of
the base is increasing in volume, so that all its parts
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keep always in the same proportion to each other; .
that is, at any instant, the eylinder is similar to the
original cylinder. When the radius of the base is
r feet, the surface area is increasing at the rate of
20 square inches per second; at what rate per second
is its volume then increasing ?
Area=8=2(7r*)+27r X 2r==67rk
Volume = V=772 X 2r= 2773

as_ ., dr .. dr_ 20 |
ae == T o
av N

(—lt——ﬁwr di and

av ., 20

Et—=677'7' Xm-——lor.

The volume changes at the rate of 10 cubic inches
per second.

Make other examples for yourself. There are few
subjects which offer such a wealth for interesting
examples.

Exzercises IX. (See page 292 for Answers.)

(1) What values of x will make y a maximum
.. oo X,
and a minimum, if y—a?—}_—l ?

(2) What value of # will make y a maximum in

. x
the equation y=-——?
q. az+ wz
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(3) A line of length p is to be cut up into 4 parts
and put together as a rectangle. Show that the area
of the rectangle will be a maximum if each of its
sides is equal to  p.

(4) A piece of string 30 inches long has its two
ends joined together and is stretched by 3 pegs so
as to form a triangle. What is the largest triangular
area that can be enclosed by the string ?

(Himt: Apply last three lines of p. 99.)

(5) Plot the curve corresponding to the equation

10, 10 .
Tx 8=z’
also find dy and deduce the value of a that will

c%r
make ¥ a minimum; and find that minimum value
of y.

(6) If y=a®—5x, find what values of  will make
% 8 maximum or a minimum.

(7) What is the smallest square that can be in-
scribed in a given square ?

(8) Inscribe in a given cone, the height of which
is equal to the radius of the base, a cylinder
() whose volume is a maximum; (b) whose lateral
area is a maximum; (¢) whose total area is a
maximum.

(9) Inscribe in a sphere, a cylinder (a) whose
volume is a maximum; (b) whose lateral area is a
maximum; (¢) whose total area is a maximum.
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(10) A spherical balloon is increasing in volume.
If, when its radius is r feet, its volume is increasing
at the rate of 4 cubic feet per second, at what rate is
its surface then increasing ?

(11) Inscribe in a given sphere a cone whose volume
is a maximum.

(12) The current C given by a battery of N similar

nxXFE
————, where E, R, r, are constants

rn
R+T\T_
and » is the number of cells coupled in series. Find
the proportion of % to N for which the current ig
greatest.

voltaic cells is C=



CHAPTER XIL
CURVATURE OF CURVES.

RETURNING to the process of successive differentia~
tion, it may be asked: Why does anybody want to
differentiate twice over? We know that when the
variable quantities are space and time, by differ-
entiating twice over we get the acceleration of a
moving body, and that in the geometrical interpreta-

ﬂ Y]

\

\

0
L )

|

L

[
I .

|
cmce=bea

1

|

'

[} : : |- —: :- 'r =
PL Pl
o X @ X
Fic. 3L 16, 32
tion, as applied to curves, g—/ means the slope of the

curve. But what can g—;/ mean in this case ? Clearly

it means the rate (per unit of length ) at which the
slope is changing—in brief, it is an indication of the
mamner in which the slope of the portion of curve
considered varies, that is, whether the slope of the
eurve increases or decreases when x increases, or, in
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other words, whether the curve curves up or down
towards the right
Suppose a slope constant, as in Fig. 31.

Here, g— is of constant value.

Suppose, however, a case in which, like Fig. 32,
the slope itself is getting greater upwards; then

dy
d___(da,) that is >y
dx " da®
If the slope is becoming less as you go to the
right (as in Fig. 14, p. 81), or as in Fig. 33, then,
even though the curve may be
going upward, since the change
is such as to diminish its slope,

will be positive.

its zzliz will be negative.

It is now time tc initiate
you into another secret—how 5
to tell whether the result that X

. Fie. 33.
you get by “equating to zero”
is amaximum or a minimum. The trick is this: After
you have differentiated (so as to get the expressiou
which you equate to zero), you then differentiate a
second time, and look whether the result of the second

2
differentiation is positive or negative. If le—z comes
out positive, then you know that the value of y

which you got was a minimum; but if %yz comes

C.M.E. H
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out megative, then the value of y which you got must
be a mawimum. That's the rule.

The reason of it ought to be quite evident. Think
of any curve that has a minimum point in it, like
Fig. 15 (p. 81), or like Fig. 84, where the point of
minimum y is marked M, and the curve is concave
upwards. To the left of M the slope is downward,
that is, negative, and is getting less negative. To the
right of M the slope has become upward, and is

Y Y
M
1
1
i
: ynuu
1
]

o U —

R
(o) PA O >
Fic. 34. Fic. 35.

getting more and more upward. Clearly the change
of slope as the curve passes through M is such that

2
-
the right, is to convert a downward slope into an
upward one.

Similarly, consider any curve that has a maximum
point in it, like Fig. 16 (p. 82), or like Fig. 35, where
the curve is conver, and the maximum point is
marked M. In this case, as the curve passes through
M from left to right, its upward slope is converted

is positive, for its operation, as x increases toward
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into a downward or negative slope, so that in this
azy
da?

Go back now to the examples of the last chapter
and verify in this way the conclusions arrived at as to
whether in any particular case there is a maximum
or a minimum. You will find below a few worked
out examples.

case the “slope of the slope” is megative.

(1) Find the maximum or minimum of
(a) y=42>—9%—6; (b) y=64+9x—4a?;
and ascertain if it be a maximum or a minimum in
each case.

(@) d—’/—Sw 9=0; x=1}; and y= —11-065.
g—mz—S, it is 4 ; hence it is & minimum.
dy _

) o =9—8x=0; x=1}; and y= +11-065,
%=—8; it is —; hence it is a maximum,

(2) Find the maxima and minima of the function
y=a*—3x+16.

YW oo 8_ 0 421- =

d_.'v—3w —3=0; 2°=1; and z=+1.

LY _ 6z —1:ibis 4+

Jw—é—ﬁw, for x=1; it is +; —
hence =1 corresponds to & minimum y=14. For
o= —1 it is —; hence = —1 corresponds to a maxi-

mum y =418,
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. . . . r—1
(8) Find the maxima and minima of 7/=m-
@!_(xz+2)xl—(m—l)x2x_2x—a:2+2-_0.
de (x®+2)? To(xi42e

or x2—2x—2=0, whose solutions are 2= 4+273 and
x=—073.

dy _(.702+2)2x(2m—2)—(x2—2m—2)(4m3+8m)

da? (2% +2)"
3 223 — 6t — 8 — 82 — 24+ 8
- (w2+2)4

The denominator is always positive, so it is sufficient
to ascertain the sign of the numerator.

If we put =273, the numerator is negative; the
maximum, y=0183.

If we put &= — 073, the numerator is positive; the
minimum, ¥ = —0683.

(4) The expense C of handling the products of a
certain factory varies with the weekly output P

. . b
according to the relation C=aP+ pary 2 +d, where

a, b, ¢, d are positive constants. For what output
will the expense be least ?

ac b

ﬂ_P=a_(?-¥—-W=O for maximum or minimum;
b aapogafi
hence =GPy and P= + A

As the output cannot be negative, P= + 4/ 3—0.
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&0 b(2c+2P)
dP:~ " (¢+ P}’
which is positive for all the values of P; hence

Now

b .
P=+ /\/ a4 corresponds to a minimum.

(5) The total cost per hour C of lighting a building
with N lamps of a certain kind is

EP(JC>
1000 /7
where E is the commercial efficiency (watts per candle),

c=N(%+

P is the candle power of each lamp,
t is the average life of each lamp in hours,
C,=cost of renewal in pence per hour of use,
O, =cost of energy per 1000 watts per hour.
Moreover, the relation connecting the average life
of a lamp with the commercial efficiency at which it
is run is approximately ¢=mE" where m and n are
constants depending on the kind of lamp.
Find the commercial efficiency for which the total
vost of lighting will be least.

C PC
(Y - e ,
We have (=N (m E-4+ 1000 )
dC _ A (PC. _nCi p_fuiny
7= (o6~ " Zo0) =t
for maximumn or minimum.
y 2+ [TANN < 7Y
E'"+1=]OOO x nC, and E= 1000 xnC;.

mPC, ~ mPC,
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This is clearly for minimum, since
a:C G
=N (D 0]

which is positive for a positive value of E.

For a particular type of 16 candle-power lamps,
C,=17 pence, C,=5 pence; and it was found that
m=10 and n=346.

B \/1()0()x 36 x 17
10x16%x5

=2'6 watts per candle-power.

Exercises X. (You are advised to plot the graph
of any numerical example.) (See p. 292 for the
Answers.)

(1) Find the maxima and minima of
y=a*+a*—10x+8.

dy

dx’

for gixz, also find the value of x which makes y a

maximam or a minimum, and show whether it is
maximum or minimum,

(2) Given y= gm——cwz, find expressions for and

(8) Find how many maxima and how many minima
there are in the curve, the equation to which is
o at
y=1-grop’
and how many in that of which the equation is
xt b

y=1- +24 730"
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~ (4) Find the maxima and minima of

5

(5) Find the maxima and minima of
— 3_.. —
Y= ratl
(6) Find the maxima and minima of
bz
Y= PRy
(7) Find the maxima and minima of

Y=m_3t3 +5

(8) Divide a number N into two parts in such a
way that three times the square of one part plus
twice the square or the other part shall be o
minimum.

(9) The efficiency # of an electric generator at
different values of output x is expressed by the

general equation :
x

u=a+bx+cw2;

where @ is a constant depending chiefly on the energy
losses in the iron and ¢ a constant depending chiefly
on the resistance of the copper parts. Find an ex-
pression for that value of the output at which the
efficiency will be a maximum,
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(10) Suppose it to be known that consumption of
coal by a certain steamer may be represented by the
formula y=0'3+40001v%; where y is the number of
tons of coal burned per hour and v is the speed
expressed in nautical miles per hour. The cost of
wages, interest on capital, and depreciation of that
ship are together equal, per hour, to the cost of
1 ton of coal. What speed will make the total cost
of a voyage of 1000 nautical miles a minimum ?
And, if coal costs 10 shillings per ton, what will that
minimum cost of the voyage amount to ?

(11) Find the maxima and minima of
y=+Z/a(10-a).

(12) Find the maxima and minima of
y =" =t —20+1



CHAPTER XIIL
OTHER USEFUL DODGES.

Partial Fractions.

WE have seen that when we differentiate a fraction
we have to perform a rather complicated operation;
and, if the fraction is not itself a simple one, the result
is bound to be a complicated expression. If we could
split the fraction into two or more simpler fractions
such that their sum is equivalent to the original
fraction, we could then proceed by differentiating
sach of these simpler expressions. And the result of
differentiating would be the sum of two (or more)
differentials, each one of which is relatively simple;
while the final expression, though of course it will be
the same as that which could be obtained without
resorting to this dodge, is thus obtained with much
less effort and appears in a simplified form.

Let us see how to reach this result. Try first the
job of adding two fractions together to form a resultant
fraction. Take, for example, the two fractions E%T
and 2. Every schoolboy can add these together

w—1 3x+1

and find their sum to be =1 And in the same
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way he can add together three or more fractions.
Now this process can certainly be reversed : that is to
say that, if this last expression were given, it is certain
that it can somehow be split back again into its
original components or partial fractions. Only we do
not know in every case that may be presented to us
how we can so split it. In order to find this out
we shall consider a simple case at first. But it is
important to bear in mind that all which follows
applies only to what are called “proper” algebraic
fractions, meaning fractions like the above, which have
the numerator of a lesser degree than the denominator;
that is, those in which the highest index of x is less

in the numerator than in the denominator. If we
2

have to deal with such an expression as = we can

1 bl
simplify it by division, since it is equlva.lent to

3 . 3
1+w—-2_ i and prowy |
to which the operation of splitting into partial fractions
can be applied, as explained hereafter.

is a preser algebraic fraction
prep 4

Case I. 1f we perform many additions of two or
more fractions the denominators of which contain only
terms in 2, and no terms in a2 a3, or any other powers
of @, we always find that the denominator of the final
resulting fraction is the proauct of the denominators
of the fractions which were added to form the result.
It follows that by factorizing the denominator of this
final fraction, we can find every one of the denomina-
tors of the partial fractions of which we are in search,
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Supﬁose we wish to go back from wf+1 to the
. 1 2
components which we know are oy | and —— =1 1t

we did not know what those components were we can
otill prepare the way by writing :
3x+1 3x+1
=1 (w+1)(@w—1) x+1
leaving blank the places for the numerators until we
know what to put there. We always may assume the
sign between the partial fractions to be plus, since, if
it be minus, we shall simply find the corresponding
numerator to be negative. Now, since the partial
fractions are proper fractions, the numerators are
mere numbers without « at all, and we can call them
A, B, C ... as we please. So, in this case, we have:
3e+1_ A B
—1_w+1+w—1
If, now, we perform the addition of these two
A(x—1)+B(x+1)

+

partial fractions, we get @+D@=-1) and this
3z+1
must be equal to @Wm—-:—l—j And, as the de-

nominators in these two expressions are the same,
the numerators must be equal, giving us:

3x+1=A(x—1)+B(xz+1).
Now, this is an equation with two unknown

quantities, and it would seem that we need another
equation before we can solve them and find A and B,
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But there is another way out of this difficulty. The
equation must be true for all values of x; therefore
it must be true for such values of x as will cause
x2—1 and x+1 to become zero, that is for =1 and
for = —1 respectively. If we make x=1, we get
4=(4 x0)+(Bx2), so that B=2; and if we make
x=—1,we get —2=(1 X —2)+(Bx0),s0that 4=1.
Replacing the A and B of the partial fractions by

these new values, we find them to become bc—-lif? and

a

a7_2:i; and the thing is done.

As a further example, let us take the fraction
4?4 20— 14
P +3aP—x—3
x is given the value 1; hence x—1 is a factor of it,
and obviously then the other factor will be 22+ 42+ 3;
and this can again be decomposed into (z+1)(x+3).

So we may write the fraction thus:
4?4 22— 14 _ A n B + c
B+3a—x—3 x+1 x—1" x+3
making three partial factors.

The denominator becomes zero when

Proceeding as before, we find
4+ 20 —14=A(x—1)(x+3)+ B(x+1)(x+3)
+C(x+1)(x-1).
Now, if we make =1, we get:
—8=(4 x0)+B(2x4)+(Cx0); that is, B= -1,
If x=—1, we get
=12=A4(—-2x2)+(Bx0)+(Cx0); whence 4 =3.
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T 2= —3, we get:
16=(4 x0)+(Bx0)+C(—2x —4); whence O=2.
So then the partial fractions are:
3 1 2
PR Ry gk
which is far easier to differentiate with respect to a

than the complicated expression from which it is
derived.

Case II. If some of the factors of the denominavor
contain terms in a2 and are not conveniently put
into factors, then the corresponding numerator may
contain a term in x, as well as a simple number, and
hence it becomes necessary to represent this unknown
numerator not by the symbol 4 but by Ax+ B; the
rest of the calculation being made as before.

: —a’—3
Try, for instance: AT @ +1)
— "3 _Am+B+ C .
@+ D+ 22+1 Tx+l’

—a*—3=(4x+ B)(x+1)+ C(x*+1).

Putting = —1, we get —4=0«K2; and O=—2;
hence —22—3=(Ax+B)(x+1)—2x*-2;
and x2=1=Ax(x+1)+B(x+1).

Putting =0, we get —1=0;
hence

=1l=Ax(x+D—x—1; or ®+x=Ax(x+1);
and x+1=A4(c+ 1D
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so that 4 =1, and the partial fractions are:

x—1 2
o?+1 o+T1
Take as another example the fraction
x®—2
(@®+1)(@*+2)
We get
a3—2 Ax+B  Cx+D

@D @+ &+l T2
_(4z+B)(2*+2)+(Cx+D)(22+1)
(*+1)(2*+2)

In this case the determination of 4, B, C, D is not
so easy. It will be simpler to proceed as follows:
Since the given fraction and the fraction founa by
adding the partial fractions are equal, and have
identical denominators, the numerators must also be
identically the same. In such a case, and for such
algebraical expressions as those with which we are
dealing here, the coefficients of the same powers of x
are equal and of same sign.

Hence, since
a?—2=(Ax+ B)(x*+2)+(Cx+ D)(a2+1)

=(A+C)x*+(B+D)x*+ (24 + C)x+2B+ D,
we have 1=4+C; 0=B+D (the coefficient of a2
in the left expression being zero); 0=24+C; and
—2=2B+D. Here are four equations, from which
we readily obtain A=-1; B=-=2; C=2; D=2;
2(x+1) 2+2

2*+2  2*+1

8o that the partial fractions are
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This method can always be used; but the method
shown first will be found the quickest in the case of
factors in x only.

Case I1I. When among the factors of the denomi-
nator there are some which are raised to some power,
one must allow for the possible existence of partial
fractions having for denominator the several powers
of that factor up to the highest. For instance, in

3a?— 2z +1
(w+ 1w —2)
the possible existence of a denominator x+1 as well
as (z+1)% and (x —2).

It may be thought, however,that, since the numerator
of the fraction the denominator of which is (xz+41)
may contain terms in x, we must allow for this in
writing Az + B for its numerator, so that

3-2041 AwtB, C D
(x+1DAx—2) (x+1)?  x+1 -2
If, however, we try to find A, B, C' and D in this case,
we fail, because we get four unknowns; and we have
only three relations connecting them, yet
3t —22x+1 x—1 + 1
@+ z—2) @+1F¢ w+1 z=2
But if we write
3x?—2x+1 A + B n %
@+ 1)Pw—2) @+1¢ z+1 z-2
we get
3x2—2x+1=A(x—2)+ B(x+1)(x—2)+ C(xz+1)2

splitting the fraction — we must allow for
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which gives ¢ =1forg=2 Replacing C by its value,
transposing, gathering like terms, and dividing by
x—2,we get —2w=A4 + B(x+1), which gives 4 =—2
for x=—1. Replacing A by its value, we get
2= —24+DB(x+1).
Hence B=2; so that the partial fractions are:

2 2 1
x+1 (w+1)2 x—2

() 1
instead of +1+(.L+1

the fractions from which ——

)2+ 5 stated above as being

32— 2.L'+1
@+ TFa—2) ",
The mystery is cleared if we observe that @F1r can

2
+ v+l @rip ™
that the three fractions given are really equivalent to

2 1 2 2 1
P 1T mrl @Rt e—2 2+l @+ip a-2
which are the partial fractions obtained.

We see that it is sufficient to allow for one numerical
term in each numerator, and that we always get the
ultimate partial fractions.

When there is a power of a factor of 2? in the
denominator, however, the corresponding numerators
must be of the form Ax+ B; for example,

3x—1 Am+B+C:v+D+ E
CaE—Dw+1) @ui—13" 22—1 ' o+1’

was obtained.

itself be split into the two fractions ——
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which gives
3x—1=(Azxz+B)(x+1)
+(Cx+ D) (x+1)(22*—1)+ E(2x?-1)2
For = —1, this gives E= —4. Replacing, trans-
posing, collecting like terms, and dividing by x+1,
we get
1623 =152+ 3 =202+ 2Dx* + (A — C)+ (B~ D).
Hence 2C=16 and C=8; 2D=-16 and D= —8;
A—C=00r4A—3=0and A=8;and finally, B—D=3
or B=—5. Sothat we obtain as the partial fractions:
S5 8@=-1)_ 4
x:—1)2" 222=1 ax+1°
It is useful to check the results obtained. The
simplest way is to replace x by a single value, say

+ 1, both in the given expression and in the partial
fractions obtained.

Whenever the denominator contains but a power of
a single factor, a very quick method is as follows:

Taking, for example,
x=2—1

41
0 1=2: th
__(w+l)3’ let £+1=z; then

Replacing, we get
4(z—1)4+1_ 42-3 4

3
= ==_5.
2 # 2t 28

The partial fractions are, therefore,

4 3

(w+17 (x+1)P
C.M,E, 1
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Applying this to differentiation, let it be required
5—dy

to differentiate y = =3 W have
dy (624 Tx—38) x4+ (5—4x)(122+7)
dx (B + Tz — 3)?
24> — 60 — 23

= 62+ Tz—3)F
If we split the given expression into
1 2
Sx—1 2x+3

we get, however,

dy 8 " 4

de™ " @u—1p" Qu+3%
which is really the same result as above split into
partial fractions. But the splitting, if done after
ditferentiating, is more complicated, as will easily be
seen. When we shall deal with the integration of
such expressions, we shall find the splitting into
partial fractions a precious auxiliary (see p. 230).

Exercises XI. (See page 293 for Answers.)

Split into fractions:

3x+5 3x—4
@) (@—3)w+4) & @—=1)(z—=2)
3x+5 4) x+1

@) Prw—12 2—Tr+12
a2—13x2+26

xr—8
O @rnEe=y O e-e-2-5




OTHER USEFUL DODGES 131

a2—3x+1
N G=hH@+2@=9
®) Ba24-Te+1
Qr+1)(Bz—2)(3x+1)
@ gy a0 iy
52246 +4 x
W) Gin@+a+ny P Gene-2¢
@ x+3
@ @-DEFiy W Grore—1
3?42 +1 5x248x—12
W) Gro@rariy GO TGrap
Ta?+9x—1 x?
SR (%) @—s)@—2y

Differential of an Inverse Function.

Consider the function (see p. 14) y=38x; it can be
expressed in the form w=%; this latter form is called
the inverse function to the one originally given.

_y dz_1
"3 dy 38
dy 1 dy dx

a—‘—” = {lﬁ or (TZ' X d—y =1.
dy
dy

2

3
w=%, and de__ 1 ___ 1 _1

If y=3x, %:3; if 2 ,and v;re see thai

Consider y=4a?, =8x; the inverse function 1s
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dv/ dx
dx dy

It can be shown that for all functions which can be
put into the inverse form, one can always write

dy dx dy 1
an¥dy=! " G T

=1

Here again

It follows that, being given a function, if it be
easier to differentiate the inverse function, this may
be done, and the reciprocal of the differential coeflicient
of the inverse function gives the differential coefficient
of the given function itself.

As an example, suppose that we wish to differentiate

Y= \/ ——1. We have seen one way of doing this,

d1/ and d_u This
du dx

by writing u=§—1 and finding
gives
dy _ 3 )
dx~ ;
2x® \/ 3_4
If we had forgotten how to proceed by this method,
or wished to check our result by some other way of
obtaining the differential coefficient, or for any other
reason we could not use the ordinary method, we could

proceed as follows: The inverse function is = T:gy-"-
9@ 3x 2y 6y .
dy” T+ T @+




